New publication on Cocoa agroforestry systems published

New publication on Cocoa agroforestry systems published

November 3, 2022

Our PhD student Dan Kanmegne Tamga has published his first paper on “Modelling the spatial distribution of the classifcation error of remote sensing data in cocoa agroforestry systems” in cooperation with his supervisory team and World Agroforestry (ICRAF). This work has been performed in the frame work of WASCAL-DE-Coop.

From the abstract:

Cocoa growing is one of the main activities in humid West Africa, which is mainly grown in pure stands. It is the main driver of deforestation and encroachment in protected areas. Cocoa agroforestry systems which have been promoted to mitigate deforestation, needs to be accurately delineated to support a valid monitoring system. Therefore, the aim of this research is to model the spatial distribution of uncertainties in the classifcation cocoa agroforestry. The study was carried out in Côte d’Ivoire, close to the Taï National Park. The analysis followed three steps (i) image classifcation based on texture parameters and vegetation indices from Sentinel-1 and -2 data respectively, to train a random forest algorithm. A classifed map with the associated probability maps was generated. (ii) Shannon entropy was calculated from the probability maps, to get the error maps at diferent thresholds (0.2, 0.3, 0.4 and 0.5). Then, (iii) the generated error maps were analysed using a Geographically Weighted Regression model to check for spatial autocorrelation. From the results, a producer accuracy (0.88) and a user’s accuracy (0.91) were obtained. A small threshold value overestimates the classifcation error, while a larger threshold will underestimate it. The optimal value was found to be between 0.3 and 0.4. There was no evidence of spatial autocorrelation except for a smaller threshold (0.2). The approach differentiated cocoa from other landcover and detected encroachment in forest. Even though some information was lost in the process, the method is efective for mapping cocoa plantations in Côte d’Ivoire.

you may also like:

Research on the UFS

Research on the UFS

The Earth Observation Research Cluster (EORC) is already conducting research on and around the highest mountain of Germany, Zugspitze and from next year our University will also be formally affiliated with the research station at Zugspitze (UFS). We are very much...

Contribution to the Geo-IT podcast of gis.Radio

Contribution to the Geo-IT podcast of gis.Radio

  For a new contribution to the Geo-IT podcast gis.Radio, Andreas Eicher interviewed our Professor Hannes Taubenböck about his recent talk at the Geographic Society Würzburg. We have reported on this talk:...

R package for Migration Analysis released

R package for Migration Analysis released

R package for Migration Analysis released We are happy to announce the initial release of our MigrationDetectR package. The package has been developed by Johannes Mast and applied as part of our work in the MIGRAWARE project. It is now released as part of the DLR...