New publication on solid waste detection in urban areas using VHR remote sensing data

New publication on solid waste detection in urban areas using VHR remote sensing data

February 21, 2023

New publication on solid waste detection using very high resolution remote sensing data

 

Researchers from the Munich University of Applied Sciences (MUAS) in Munich, the Earth Observation Center (EOC) of the German Aerospace Center (DLR) in Oberpfaffenhofen and the University of Würzburg in Würzburg teamed up for an explorative study on solid waste detection in urban areas using very high resolution remote sensing data. The paper titled “Litter on the streets – solid waste detection using VHR images” was just published in the European Journal of Remote Sensing by Yrneh Zarit Ulloa-Torrealba, Andreas Schmitt, Michael Wurm & Hannes Taubenböck. The study aimed to test a combination of machine learning, high resolution earth observation and GIS data to detect diverse categories of residual waste on the streets, such as sacks and construction debris.

 

 

From the Abstract: Failures in urban areas’ solid waste management lead to clandestine garbage dumping and pollution. This affects sanitation and public human hygiene, deteriorates quality of life, and

contributes to deprivation. This study aimed to test a combination of machine learning, high resolution earth observation and GIS data to detect diverse categories of residual waste on the streets, such as sacks and construction debris. We conceptualised five different classes of solid waste from image interpretation: “Sure”, “Half-sure”, “Not-sure”, “Dispersed”, and “Nongarbage”. We tested a combination of k-means-based segmentation and supervised random forest to investigate the capabilities of automatic classification of these waste classes. The model can detect the presence of solid waste on the streets and achieved an accuracy of up from 73.95%–95.76% for the class “Sure”. Moreover, a building extraction using an EfficientNet deep-learning-based semantic segmentation allowed masking the rooftops. This improved the accuracy of the classes “Sure” and “Non-garbage”. The systematic evaluation of all parameters considered in this model provides a robust and reliable method of solid waste detection for

decision-makers. These results highlight areas where insufficient waste management affects the citizens of a given city.

 

Read the full article here: https://www.tandfonline.com/doi/full/10.1080/22797254.2023.2176006  

 

you may also like:

Research on the UFS

Research on the UFS

The Earth Observation Research Cluster (EORC) is already conducting research on and around the highest mountain of Germany, Zugspitze and from next year our University will also be formally affiliated with the research station at Zugspitze (UFS). We are very much...

Contribution to the Geo-IT podcast of gis.Radio

Contribution to the Geo-IT podcast of gis.Radio

  For a new contribution to the Geo-IT podcast gis.Radio, Andreas Eicher interviewed our Professor Hannes Taubenböck about his recent talk at the Geographic Society Würzburg. We have reported on this talk:...

R package for Migration Analysis released

R package for Migration Analysis released

R package for Migration Analysis released We are happy to announce the initial release of our MigrationDetectR package. The package has been developed by Johannes Mast and applied as part of our work in the MIGRAWARE project. It is now released as part of the DLR...