New Publication: Spatiotemporal Fusion Modelling Using STARFM: Examples of Landsat 8 and Sentinel-2 NDVI in Bavaria

New Publication: Spatiotemporal Fusion Modelling Using STARFM: Examples of Landsat 8 and Sentinel-2 NDVI in Bavaria

February 3, 2022

We are glad to share with you our newest publication on “Spatiotemporal Fusion Modelling Using STARFM: Examples of Landsat 8 and Sentinel-2 NDVI in Bavaria” in the open-access journal Remote Sensing by MDPI.

From the abstract: The increasing availability and variety of global satellite products provide a new level of data with different spatial, temporal, and spectral resolutions; however, identifying the most suited resolution for a specific application consumes increasingly more time and computation effort. The region’s cloud coverage additionally influences the choice of the best trade-off between spatial and temporal resolution, and different pixel sizes of remote sensing (RS) data may hinder the accurate monitoring of different land cover (LC) classes such as agriculture, forest, grassland, water, urban, and natural-seminatural. To investigate the importance of RS data for these LC classes, the present study fuses NDVIs of two high spatial resolution data (high pair) (Landsat (30 m, 16 days; L) and Sentinel-2 (10 m, 5–6 days; S), with four low spatial resolution data (low pair) (MOD13Q1 (250 m, 16 days), MCD43A4 (500 m, one day), MOD09GQ (250 m, one-day), and MOD09Q1 (250 m, eight day)) using the spatial and temporal adaptive reflectance fusion model (STARFM), which fills regions’ cloud or shadow gaps without losing spatial information. These eight synthetic NDVI STARFM products (2: high pair multiply 4: low pair) offer a spatial resolution of 10 or 30 m and temporal resolution of 1, 8, or 16 days for the entire state of Bavaria (Germany) in 2019. Due to their higher revisit frequency and more cloud and shadow-free scenes (S = 13, L = 9), Sentinel-2 (overall R2 = 0.71, and RMSE = 0.11) synthetic NDVI products provide more accurate results than Landsat (overall R2 = 0.61, and RMSE = 0.13). Likewise, for the agriculture class, synthetic products obtained using Sentinel-2 resulted in higher accuracy than Landsat except for L-MOD13Q1 (R2 = 0.62, RMSE = 0.11), resulting in similar accuracy preciseness as S-MOD13Q1 (R2 = 0.68, RMSE = 0.13). Similarly, comparing L-MOD13Q1 (R2 = 0.60, RMSE = 0.05) and S-MOD13Q1 (R2 = 0.52, RMSE = 0.09) for the forest class, the former resulted in higher accuracy and precision than the latter. Conclusively, both L-MOD13Q1 and S-MOD13Q1 are suitable for agricultural and forest monitoring; however, the spatial resolution of 30 m and low storage capacity makes L-MOD13Q1 more prominent and faster than that of S-MOD13Q1 with the 10-m spatial resolution.

Full article: Dhillon, M.S.; Dahms, T.; Kübert-Flock, C.; Steffan-Dewenter, I.; Zhang, J.; Ullmann, T. Spatiotemporal Fusion Modelling Using STARFM: Examples of Landsat 8 and Sentinel-2 NDVI in Bavaria. Remote Sens. 2022, 14, 677. https://doi.org/10.3390/rs14030677

you may also like:

Call for Papers for the Joint Urban Remote Sensing Event (JURSE)

Call for Papers for the Joint Urban Remote Sensing Event (JURSE)

The Joint Urban Remote Sensing Event (JURSE) ( http://jurse.org/ ) is a forum of excellence where researchers, practitioners and students present, share, and discuss their latest findings and results. A very dynamic version of the Joint Urban Remote Sensing Event...

public talk by Hannes Taubenböck

public talk by Hannes Taubenböck

Deutschland – Wie und wo wir wohnen (wollen) Vortrag von Hannes Taubenböck (publich talk in german by Hannes Taubenböck on "How and where we like to live") Jede:r von uns wohnt – irgendwie. Ob in ländlichen oder urbanen Gefilden, ob in Ein- oder Mehrfamilienhäusern,...

new publication: on population disaggregation

new publication: on population disaggregation

A new article by Hannes Taubenböck and his team got published "Empiric recommendations for population disaggregation under different data scenarios" in PLOS One. From the abstract: "High-resolution population mapping is of high relevance for developing and...

most recent news:

Call for Papers for the Joint Urban Remote Sensing Event (JURSE)

Call for Papers for the Joint Urban Remote Sensing Event (JURSE)

The Joint Urban Remote Sensing Event (JURSE) ( http://jurse.org/ ) is a forum of excellence where researchers, practitioners and students present, share, and discuss their latest findings and results. A very dynamic version of the Joint Urban Remote Sensing Event...

public talk by Hannes Taubenböck

public talk by Hannes Taubenböck

Deutschland – Wie und wo wir wohnen (wollen) Vortrag von Hannes Taubenböck (publich talk in german by Hannes Taubenböck on "How and where we like to live") Jede:r von uns wohnt – irgendwie. Ob in ländlichen oder urbanen Gefilden, ob in Ein- oder Mehrfamilienhäusern,...

new publication: on population disaggregation

new publication: on population disaggregation

A new article by Hannes Taubenböck and his team got published "Empiric recommendations for population disaggregation under different data scenarios" in PLOS One. From the abstract: "High-resolution population mapping is of high relevance for developing and...