Preprocessing of Sentinel-1 SAR data via Snappy Python module

Preprocessing of Sentinel-1 SAR data via Snappy Python module


August 1, 2016

This chapter demonstrates the Snappy Python module for the automatization of the ESA SNAP tool.

Code examples will be shown for an automated processing chain for the preprocessing of Sentinel-1 SAR data including Calibration, Subsetting and Terrain Correction of GRD (Ground Range Detected data).

A detailed installation tutorial for snappy can be found here:

First, import the needed Python modules:


import snappy

from snappy import ProductIO
from snappy import HashMap

import os, gc   
from snappy import GPF

HashMap = snappy.jpy.get_type('java.util.HashMap')

Now loop through all Sentinel-1 data sub folders that are located within a super folder (of course, make sure, that the data is already unzipped):

path = "D:\\SENTINEL\\"
 for folder in os.listdir(path):

   output = path + folder + "\\"  
   timestamp = folder.split("_")[4] 
   date = timestamp[:8]

Then, read in the Sentinel-1 data product:

   sentinel_1 = ProductIO.readProduct(output + "\\")    
   print sentinel_1

If polarization bands are available, spolit up your code to process VH and VV intensity data separately. The first step is the calibration procedure by transforming the DN values to Sigma Naught respectively. You can specify the parameters to output the Image in Decibels as well.

   pols = ['VH','VV'] 
   for p in pols:  
      polarization = p    
      parameters = HashMap() 
      parameters.put('outputSigmaBand', True) 
      parameters.put('sourceBands', 'Intensity_' + polarization) 
      parameters.put('selectedPolarisations', polarization) 
      parameters.put('outputImageScaleInDb', False)  

      calib = output + date + "_calibrate_" + polarization 
      target_0 = GPF.createProduct("Calibration", parameters, sentinel_1) 
      ProductIO.writeProduct(target_0, calib, 'BEAM-DIMAP')

Next, specify a subset AOI to reduce the data amount and processing time. The AOI specified by its outer polygon corners and is formatted through a Well Known Text (WKT).

      ### SUBSET

      calibration = ProductIO.readProduct(calib + ".dim")    
      WKTReader = snappy.jpy.get_type('')

      wkt = "POLYGON((12.76221 53.70951, 12.72085 54.07433, 13.58674 54.07981, 
                      13.59605 53.70875, 12.76221 53.70951))"

      geom = WKTReader().read(wkt)

      parameters = HashMap()
      parameters.put('geoRegion', geom)
      parameters.put('outputImageScaleInDb', False)

      subset = output + date + "_subset_" + polarization
      target_1 = GPF.createProduct("Subset", parameters, calibration)
      ProductIO.writeProduct(target_1, subset, 'BEAM-DIMAP')

Apply a Range Doppler Terrain Correction to correct for layover and foreshortening effects, by using the SRTM 3 arcsecond product (90m) that is downloaded automatically. You could also specify an own DEM product with a higher spatial resolution from a local path:

      parameters = HashMap()     
      parameters.put('demResamplingMethod', 'NEAREST_NEIGHBOUR') 
      parameters.put('imgResamplingMethod', 'NEAREST_NEIGHBOUR') 
      parameters.put('demName', 'SRTM 3Sec') 
      parameters.put('pixelSpacingInMeter', 10.0) 
      parameters.put('sourceBands', 'Sigma0_' + polarization)
      terrain = output + date + "_corrected_" + polarization 
      target_2 = GPF.createProduct("Terrain-Correction", parameters, subset) 
      ProductIO.writeProduct(target_2, terrain, 'GeoTIFF')


you may also like:

New PhD student Adomas Liepa

New PhD student Adomas Liepa

I started my academic career in Bergen, Norway where I studied geophysics. During my bachelor's degree I became more interested in Earth's surface and surface dynamics, rather than the interior of the Earth, which is what geophysics focuses on. After obtaining my...

Merry Christmas and a Happy New Year 2021

Merry Christmas and a Happy New Year 2021

An unprecedented year with various unexpected events and many required changes had to be managed by our department like by many other organizations as well. A challenging year is coming to an end. We at the Department of Remote Sensing at the University of Würzburg...

most recent news:

New researcher Pawel Kluter

New researcher Pawel Kluter

Pawel Kluter joined the Department of Remote Sensing as a Research Associate in November 2020. His main role is the deployment of Data Cubes in cloud environments (Front End / Back End), as well as the development of remote sensing processing routines using Python....

New PostDoc Dr Insa Otte

New PostDoc Dr Insa Otte

We are very happy to welcome Insa Otte at the Department of Remote Sensing as a new research fellow. Before joining the department, Insa worked on rainfall in-situ data and focused on extreme events. But generally, she has a great interest and experience in...