unsupervised classification with R

unsupervised classification with R

m

January 29, 2016

Here we see three simple ways to perform an unsupervised classification on a raster dataset in R. I will show these approaches, but first we need to load the relevant packages and the actual data. You could use the Landsat data used in the “Remote Sensing and GIS for Ecologists” book which can be downloaded here.

library("raster")  
library("cluster")
library("randomForest")

# loading the layerstack  
# here we use a subset of the Landsat dataset from "Remote Sensing and GIS for Ecologists" 
image <- stack("path/to/raster")
plotRGB(image, r=3,g=2,b=1,stretch="hist")

RGBimage

Now we will prepare the data for the classifications. First we convert the raster data in a matrix, then we remove the NA-values.

## returns the values of the raster dataset and write them in a matrix. 
v <- getValues(image)
i <- which(!is.na(v))
v <- na.omit(v)

The first classification method is the well-known k-means method. It separates n observations into  k clusters. Each observation belongs to the cluster with the nearest mean.

## kmeans classification 
E <- kmeans(v, 12, iter.max = 100, nstart = 10)
kmeans_raster <- raster(image)
kmeans_raster[i] <- E$cluster
plot(kmeans_raster)

Kmeans

The second classification method is called clara (Clustering for Large Applications). It work by clustering only a sample of the dataset and then assigns all object in the dataset to the clusters.

## clara classification 
clus <- clara(v,12,samples=500,metric="manhattan",pamLike=T)
clara_raster <- raster(image)
clara_raster[i] <- clus$clustering
plot(clara_raster)

clara

The third method uses a random Forest model to calculate proximity values. These values were clustered using k-means. The clusters are used to train another random Forest model for classification.

## unsupervised randomForest classification using kmeans
vx<-v[sample(nrow(v), 500),]
rf = randomForest(vx)
rf_prox <- randomForest(vx,ntree = 1000, proximity = TRUE)$proximity

E_rf <- kmeans(rf_prox, 12, iter.max = 100, nstart = 10)
rf <- randomForest(vx,as.factor(E_rf$cluster),ntree = 500)
rf_raster<- predict(image,rf)
plot(rf_raster)

randomForest

The three classifications are stacked into one layerstack and plotted for comparison.

class_stack <- stack(kmeans_raster,clara_raster,rf_raster)
names(class_stack) <- c("kmeans","clara","randomForest")

plot(class_stack)

Comparing the three classifications:

Looking at the different classifications we notice, that the kmeans and clara classifications have only minor differences.
The randomForest classification shows a different image.

 

want to read more about R and classifications? check out this book:

you may also like:

Super-Test-Site Würzburg meeting

Super-Test-Site Würzburg meeting

The team of our "Super-Test-Site Würzburg" consortium (University of Würzburg, the Karlsruhe Institute of Technology, the Friedrich-Alexander-University Erlangen-Nürnberg, Leibniz-Institute for Länderkunde in Leipzig  and the German Aerospace Center)...

A Warm and Festive Evening: The EORC Christmas Party

A Warm and Festive Evening: The EORC Christmas Party

As the year slowly draws to a close, the EORC came together this week to celebrate the season and spend an evening away from our usual desks, and classrooms. Our annual EORC Christmas Party brought together staff members, student assistants, and our current MSc...

Ideas and Inspiration: Our Internship & MSc Thesis Fair

Ideas and Inspiration: Our Internship & MSc Thesis Fair

This week we hosted our annual EORC Internship and MSc Thesis Fair, bringing together our research staff and the current cohort of EAGLE students. As always, the event offered a relaxed and welcoming atmosphere—an ideal setting for exploring future academic pathways....

Presenting Our UAS Research at the UFS Science Team Meeting

Presenting Our UAS Research at the UFS Science Team Meeting

At the recent UFS (Umweltforschungsstation Schneefernerhaus) science team meeting, our group had the opportunity to present current and planned UAS-based research activities in the high-mountain environment surrounding the Zugspitze. The meeting offered an ideal...

Share This