unsupervised classification with R

unsupervised classification with R

m

January 29, 2016

Here we see three simple ways to perform an unsupervised classification on a raster dataset in R. I will show these approaches, but first we need to load the relevant packages and the actual data. You could use the Landsat data used in the “Remote Sensing and GIS for Ecologists” book which can be downloaded here.

library("raster")  
library("cluster")
library("randomForest")

# loading the layerstack  
# here we use a subset of the Landsat dataset from "Remote Sensing and GIS for Ecologists" 
image <- stack("path/to/raster")
plotRGB(image, r=3,g=2,b=1,stretch="hist")

RGBimage

Now we will prepare the data for the classifications. First we convert the raster data in a matrix, then we remove the NA-values.

## returns the values of the raster dataset and write them in a matrix. 
v <- getValues(image)
i <- which(!is.na(v))
v <- na.omit(v)

The first classification method is the well-known k-means method. It separates n observations into  k clusters. Each observation belongs to the cluster with the nearest mean.

## kmeans classification 
E <- kmeans(v, 12, iter.max = 100, nstart = 10)
kmeans_raster <- raster(image)
kmeans_raster[i] <- E$cluster
plot(kmeans_raster)

Kmeans

The second classification method is called clara (Clustering for Large Applications). It work by clustering only a sample of the dataset and then assigns all object in the dataset to the clusters.

## clara classification 
clus <- clara(v,12,samples=500,metric="manhattan",pamLike=T)
clara_raster <- raster(image)
clara_raster[i] <- clus$clustering
plot(clara_raster)

clara

The third method uses a random Forest model to calculate proximity values. These values were clustered using k-means. The clusters are used to train another random Forest model for classification.

## unsupervised randomForest classification using kmeans
vx<-v[sample(nrow(v), 500),]
rf = randomForest(vx)
rf_prox <- randomForest(vx,ntree = 1000, proximity = TRUE)$proximity

E_rf <- kmeans(rf_prox, 12, iter.max = 100, nstart = 10)
rf <- randomForest(vx,as.factor(E_rf$cluster),ntree = 500)
rf_raster<- predict(image,rf)
plot(rf_raster)

randomForest

The three classifications are stacked into one layerstack and plotted for comparison.

class_stack <- stack(kmeans_raster,clara_raster,rf_raster)
names(class_stack) <- c("kmeans","clara","randomForest")

plot(class_stack)

Comparing the three classifications:

Looking at the different classifications we notice, that the kmeans and clara classifications have only minor differences.
The randomForest classification shows a different image.

 

want to read more about R and classifications? check out this book:

you may also like:

Invited Talk at the University of Zurich

Invited Talk at the University of Zurich

EORC PI Florian Betz was invited by the group of Remote Sensing of Environmental Changes at the University of Zurich to talk about his research on satellite time series based analysis of river systems. The visit was a great opportunity to exchange ideas and elaborate...

Snow and ice research in the Arctic

Snow and ice research in the Arctic

Our colleagues Dr. Mirjana Bevanda and Dr. cand. Jakob Schwalb-Willmann recently conducted another UAS-based fieldwork in the Arctic, focusing on temporal variability of snow and ice property. Utilizing VTOL UAS platforms equipped with LiDAR, multispectral, and...

Exploring Wetland Ecosystems in the Rhön Biosphere Reserve

Exploring Wetland Ecosystems in the Rhön Biosphere Reserve

As part of our ongoing collaboration with our EOCap4Africa project partners, two members of the EORC (Dr. Insa Otte, Lilly Schell) at the University of Würzburg recently took a field trip to the Rhön Biosphere Reserve with our visiting scientists. We visited two...

Spring Vibes on Our Lunch Break

Spring Vibes on Our Lunch Break

With the first warm days of spring finally arriving, a small fraction of our team already took full advantage of the sunshine during lunch break—gathering outside to soak up the mild weather and enjoy a few well-earned moments of relaxation. Some of us have just...