CornXplain: User Friendly App to Predict Corn Yields in the USA

CornXplain: User Friendly App to Predict Corn Yields in the USA

m

December 7, 2022

Accurate Crop Yield Prediction Using Satellite Remote Sensing is Hard? No, It’s not anymore. My colleague Johannes Mast and I developed a user-friendly crop yield app (cornXplain) that can predict future yields for precision agriculture and sustainable agriculture at higher accuracy. Currently, the app works for Maize (/Corn) crops; however, it can potentially adapt to other crop types like the winter wheat, soybean, and rapeseed. So far, cornXplain has three parts:

1) Data Explorer: where the user can visualize the spatial pattern of #climate or biophysical variables,

2) Model Explorer: where the user can see the inner details of the model.

The model combines a physical model (Light use efficiency) and machine learning (random forest ). The model predicts yield at the county level for five corn-growing states (Iowa, Illinois, Nebraska, Minnesota, and Indiana) in the USA. Users can also see the impact of biophysical and climate variables on crop yield prediction for different counties, and

 3) Scenario Explorer: where the user can play around with multiple scenarios. For example, what will impact crop yield if the temperature rises by 2 degrees Celsius or rainfall decreases by 20%?

Data used: MODIS (500m, eight days), Climate Variables and Indices (Temperature, Precipitation, Drought Index, Heat and Cold Index), Biophysical Parameters (Lead Area Index (lai), Fraction of Photosynthetically Active Radiation (fpar)) and Crop Yields (bushels/acre).

The data was provided by ML4Earth Hackathon 2022.

This information will be helpful for the remote-sensing agricultural community. We are glad to share our code for future research purposes, and it is available on our GitHub. Our relevant publication on a similar topic would be out soon.

For more information, feel free to contact us.

Written By: Maninder Singh Dhillon


follow us and share it on:

you may also like:

Remote sensing insights into biogas flowering mixtures

Remote sensing insights into biogas flowering mixtures

Perennial wildflower mixtures are gaining importance as an alternative to maize in biogas production. As highlighted in the praxis-agrar article on crop diversification with biogas flowering mixtures, they combine agricultural use with clear ecological benefits....

PhD submitted by Julia Rieder

PhD submitted by Julia Rieder

We are pleased to share that our PhD student Julia Rieder has successfully submitted her doctoral thesis! Her dissertation, entitled “Abiotic and biotic drivers of drought responses in European beech (Fagus sylvatica L.) inferred from field and LiDAR data”,...

New Funded Project on Automated Detection of Mining Areas

New Funded Project on Automated Detection of Mining Areas

In a newly launched research project funded by the KSB Foundation, we focus on the automated identification of mining areas based on remote sensing data. The aim is to systematically detect large-scale mining activities and to track their spatial and temporal...

Share This