Master Defense: Discovering Hydrographic Parameters of HydroSHEDS and TanDEM-X Digital Elevation Model through Exploratory Data Analysis” at 12:00 seminar room 3, John-Skilton-Str. 4a.

Master Defense: Discovering Hydrographic Parameters of HydroSHEDS and TanDEM-X Digital Elevation Model through Exploratory Data Analysis” at 12:00 seminar room 3, John-Skilton-Str. 4a.

m

October 22, 2024

On October 29, 2024 Subarno Shankar will present his master thesis ” Discovering Hydrographic Parameters of HydroSHEDS and TanDEM-X Digital Elevation Model through Exploratory Data Analysis” at 12:00 seminar room 3, John-Skilton-Str. 4a.
From the abstract: Climate change and anthropogenic factors, including groundwater pumping, deforestation, urbanization, and agriculture, impact the fluvial systems and cause degradation of the ecosystem. This study demonstrates the development and incorporation of geomorphometric parameters, including the Topographic Wetness Index (TWI), Terrain Ruggedness Index (TRI), and Geomorphons from the SRTM and TanDEM-X digital elevation models (DEM) into a hydro-environmental dataset termed HydroSHEDS by leveraging a hybrid workflow of QGIS and Python at a catchment scale. Additionally, the relationship of geomorphometric parameters with multi-annual environmental variables, including Soil Moisture, Precipitation Height, and Drought Index obtained from DWD and various hydro environmental features from HydroSHEDS based on environmental variables is investigated utilizing the Exploratory Data Analysis (EDA) techniques such as Descriptive Statistics, Correlation, Multiple Regression, and Clustering. The correlation analysis of environmental variables with geomorphometric parameters and hydro-environmental variables at a catchment scale indicates a moderate to strong relationship for most attributes, where SRTM exhibits a higher correlation with environmental variables than TanDEM-X. The multiple regression prediction scores for Soil Moisture (R2 = 0.94, RMSE = 0.03), Precipitation Height (R2 = 0.88, RMSE = 86.61), and Drought Index (R2= 0.86, RMSE = 6.83) indicate a strong relationship with geomorphometric parameters and BasinATLAS hydro-environmental variables. The clustering analysis using k-means clustering a silhouette score (0.52) indicates the moderate grouping of predicted catchments based on their hydrographic features. Overall, the results indicate favourable workflow compatibility for deriving and incorporating geomorphometric parameters in HydroSHEDS at a catchment scale.
1st supervisor: Prof. Dr. Tobias Ullmann
2nd supervisor: Leena Julia Warmedinger, DLR

you may also like:

Urbanization in China – A review of 12 years of research

Urbanization in China – A review of 12 years of research

The world has experienced a tremendous wave of urbanization. In 1975, 37.7% of the world's population lived in urban areas; 50 years later in 2025, this figure has risen to 58.3%. In China, in particular, the dynamics were even more dramatic: in 1975, only 17.4% of...

End of the Year & New Year’s Eve Greetings

End of the Year & New Year’s Eve Greetings

As we approach the end of 2024, we take a moment to reflect on the various great collaborations and project goals we have achieved throughout the year. We extend our heartfelt thanks to our colleagues, collaborators, and partners for your collaboration, contributions,...

EAGLE Daria did her internship in Bergen

EAGLE Daria did her internship in Bergen

Our EAGLE student Daria recently wrapped up an internship at the University of Bergen in the Remote Sensing research group. With the support of her supervisor, Dr. Benjamin Abreu Robson, she got to work on the Jostedalsbreen glacier using drone and satellite data. Her...