Article published: Modelling Crop Biomass from Synthetic Remote Sensing Time Series: Example for the DEMMIN Test Site, Germany

Article published: Modelling Crop Biomass from Synthetic Remote Sensing Time Series: Example for the DEMMIN Test Site, Germany

June 5, 2020

Figure 1. Image-wise comparison of normalized difference vegetation index (NDVI) obtained from Landsat and the spatial and temporal reflectance adaptive reflectance fusion model (STARFM) of a 30-meter spatial resolution on DOY 155 (4 June); (left) NDVI image obtained from Landsat 8 (right) NDVI image obtained from the STARFM. Two subset maps at the bottom show a detailed spatial comparison of Plot 1, Plot 2, and Plot 4 on one of the winter wheat fields of the study region. The legend at the bottom center of the images shows the NDVI range from high: 1 (green) to low: <0 (red).

The article entitled “Modelling Crop Biomass from Synthetic Remote Sensing Time Series: Example for the DEMMIN Test Site, Germany” is published in the remote sensing journal of MDPI. This open-access article is published as a feature paper in a special issue named “Multi-Sensor Data Fusion and Analysis of Multi-Temporal Remote Sensed Imagery”.

This study compares the performance of the five widely used crop growth models (CGMs): World Food Studies (WOFOST), Coalition for Environmentally Responsible Economies (CERES)-Wheat, AquaCrop, cropping systems simulation model (CropSyst), and the semi-empiric light use efficiency approach (LUE) for the prediction of winter wheat biomass on the Durable Environmental Multidisciplinary Monitoring Information Network (DEMMIN) test site, Germany. The study focuses on the use of remote sensing (RS) data, acquired in 2015, in CGMs, as they offer spatial information on the actual conditions of the vegetation. Along with this, the study investigates the data fusion of Landsat (30 m) and Moderate Resolution Imaging Spectroradiometer (MODIS) (500 m) data using the spatial and temporal reflectance adaptive reflectance fusion model (STARFM) fusion algorithm.

Figure 2. Conceptual framework of the study that states the total input requirement of the crop growth models (CGMs), including various climate parameters, and biophysical parameters derived from the STARFM and MODIS NDVI time series. The simulated biomass obtained from the CGMs is validated with the in situ biomass and CGMs are compared on the basis of simplicity, accuracy, and reliability using the STARFM and MODIS data sets. The end products are obtained as a winter wheat daily biomass time series of 30 m and 500 m spatial resolutions during the study period.
Figure 3. Comparison of two best-fit models: AquaCrop (left) and LUE (right) based on the spatial distribution of their simulated biomass obtained on DOY 171 using the STARFM NDVI input for winter wheat during the study period. The stretched legend at bottom left represents the maximum and minimum range of crop biomass from 1554.81 to 1212.3 g/m2. Two subset maps at the bottom of each image show the detailed spatial distribution of biomass for five sample plots distributed in two winter wheat fields of the study region.

The article is co-authored by the colleagues of the Department of Remote Sensing, University of Wuerzburg (Maninder Singh Dhillon, Thorsten Dahms, Carina Kuebert-Flock), DLR Neustrelitz (Erik Borg), Department of Geoecology and Physical Geography, Martin-Luther-University Halle-Wittenberg (Christopher Conrad), and the Department of Physical Geography, University of Wuerzburg (Tobias Ullmann).

Reference:

Dhillon, M.S.; Dahms, T.; Kuebert-Flock, C.; Borg, E.; Conrad, C.; Ullmann, T. Modelling Crop Biomass from Synthetic Remote Sensing Time Series: Example for the DEMMIN Test Site, Germany. Remote Sens. 202012, 1819.

you may also like:

Our PhD Wall is Growing — and So Is Our Research Family!

Our PhD Wall is Growing — and So Is Our Research Family!

It’s been a remarkable year for our research team! The PhD Wall of Fame, showcasing all past and current doctoral researchers, has officially reached its limits — and we’ve had to expand it to make room for even more success stories. So far six PhD defenses have taken...

🎉 A Sweet Surprise for a Special Birthday!

🎉 A Sweet Surprise for a Special Birthday!

At our department, we not only work hard together — we also celebrate the milestones that make our team so special. This week, we had the joy of surprising our wonderful secretary Tine Linge on her 60th birthday! Early in the morning, colleagues gathered to prepare a...

Contribution at SilviLaser Conference in Quebec

Contribution at SilviLaser Conference in Quebec

At SilviLaser 2025 in Québec City, PhD candidate Julia Rieder (EORC, University of Würzburg and staff member of EO4CAM) presented her work on "European Beech under Drought: Effects of Topography, Competition and Soil Water Availability." Her study uses LiDAR to reveal...

EORC at Remote Sensing Symposium in Darmstadt

EORC at Remote Sensing Symposium in Darmstadt

On 2 October 2025, Dr. John Friesen and Dr. Julian Fäth from the Earth Observation Research Cluster (EORC) at the University of Würzburg and staff members of EO4CAM took part in the symposium "Vom Orbit zur Entscheidung: Satellitenfernerkundung in der...