How does seasonal climate affect Maize cultivation in East Africa

How does seasonal climate affect Maize cultivation in East Africa

March 14, 2025

Our PhD student Adomas Liepa published new research on the impacts of seasonal differences in the local climate on maize cropping systems in East Africa. This study, conducted in collaboration with partners from the German Aerospace Center (DLR) and the International Centre of Insect Physiology and Ecology (icipe), provides valuable insights into how varying climatic conditions influence maize growth and yield. The research highlights the importance of understanding local climate patterns to optimize agricultural practices and improve food security in the region.

The abstract: In Kenya, climate variability and change threaten smallholder, rainfed farms, with crop failures, yield reductions, and pest infestations. Efficient agroecological strategies, such as Push-Pull intercropping, offer documented benefits including pest control, improved soil fertility, and water conservation compared to traditional maize monocropping. To date, no studies exist comparing traditional maize monocropping and Push-Pull intercropping using earth observation tools over several growing seasons in East Africa. Our research addresses this by harmonizing Landsat 7, 8, 9 with Sentinel-2 remote sensing time series from 2016 to 2023. Phenological metrics of 15 growing seasons are extracted based on a threshold method using the Normalized Difference Vegetation Index (NDVI) as a vegetation proxy. Field data from 58 sites in southwestern Kenya provided training for this analysis, revealing detectable inter-class differences. Notably, Push-Pull intercrop fields showed greater resilience during biotic stress events, such as the locust outbreak in 2020 short rainy season and the fall armyworm infestation in combination with delayed and below-average rainfall during the short 2021 and the long 2022 growing seasons. Higher maximum NDVI and extended season duration indicated a higher resilience of Push-Pull farming under unfavorable agricultural conditions. Short growing seasons with unfavorable conditions showed earlier end of seasons in both systems, whereas long growing seasons with unfavorable conditions caused delayed onset and end of seasons. This study marks the first attempt to leverage earth observation data to compare traditional maize agriculture with agricultural systems featuring applied ecological management strategies, showcasing the potential of earth observation tools to monitor and evaluate agroecological resilience.

Link to the full paper: https://www.tandfonline.com/doi/full/10.1080/15481603.2025.2476248#abstract

you may also like:

Press Release by University of Würzburg about our Arctic research

Press Release by University of Würzburg about our Arctic research

Our work in the Arctic on Svalbard was covered by the press team of the University of Würzburg. It covers our focus on studying the region’s ecosystems and the effects of climate change on its environment using Earth Observation methods. Please see the german version...

Prof Gustau Camps-Valls visits DLR-EOC

Prof Gustau Camps-Valls visits DLR-EOC

Today we had the great pleasure to welcome Prof Gustau Camps-Valls at DLR's Earth Observation Center (EOC).   Prof Gustau Camps-Valls is a Full Professor in Electrical Engineering and leads the Image and Signal Processing (ISP) group at Universitat de València (...

Advancing Forest Inventory: Field Trip to Sailershausen

Advancing Forest Inventory: Field Trip to Sailershausen

Today, staff from the Earth Observation Research Cluster conducted a field trip to Sailershausen to visit three fully inventoried forest plots and to discuss examples of remote sensing applications with the forestry administration of the University of Würzburg. The...

PhD defense by Alexandra Bell

PhD defense by Alexandra Bell

We cordially invite all EORC staff members, interested colleagues as well as students and the interested public to join the public defense by Alexandra Bell on her PhD "Spaceborne Remote Sensing for Policy - Supporting National Compliance with International Policy...

PhD defense by Jakob Schwalb-Willmann

PhD defense by Jakob Schwalb-Willmann

On March 31st at 2:00 PM, Jakob Schwalb-Willmann will defend his PhD thesis, "Potentials of Animal-Environment Interactions for Remote Sensing Research." The public defense will be held at John-Skilton Str. 4a, Lecture Room 1. All interested staff, students, and...