MSc thesis handed in on predicting forest understory canopy cover

MSc thesis handed in on predicting forest understory canopy cover

May 9, 2016

A M.Sc thesis was written by Bastian Schumann under the supervision of Dr. Hooman Latifi and Prof. Christopher Conrad that focused on a LiDAR-based approach to combine structural metrics and forest habitat informaiton for causal and predictive models of understory canopy cover. The data base used consisted of a bi-temporal LiDAR dataset as well as two field datasets and two habitat maps. The entire data were initially edited, revealing that a bi-temporal treatment is only possible for understory layers. The statistical models used for modelling canopy cover density included random forest, logistic models and zero-and-one inflated beta regression.

The results revealed the most relevant LiDAR metrics which contribute to explain the canopy cover density. Furthermore it indicates that the habitat types have a significant influence on canopy cover density. In addition, it was shown that with the use of a denser point cloud a higher performance can be achieved in almost every vertical stand layer.

Wall-to-wall predictions of understory canopy cover usign high density point cloud, habitat types and a logistic model

Wall-to-wall predictions of understory canopy cover usign high density point cloud, habitat types and a logistic model

you may also like:

Successful MSc defense by Sonja Maas

Successful MSc defense by Sonja Maas

Big congratulations to Sonja Maas, who successfully defended her Master thesis today on the highly relevant and increasingly pressing topic: LiDAR-Based Acquisition Strategies for Forest Management Planning in a Mature Beech Stand Supervised by Dr. Julian Fäth and...

Share This