New Paper on Quantifying Uncertainty in Slum Detection published

New Paper on Quantifying Uncertainty in Slum Detection published

February 2, 2024

A new paper titled „Quantifying Uncertainty in Slum Detection: Advancing Transfer-Learning with Limited Data in Noisy Urban Environments” has just been published by Thomas Stark, Michael Wurm, Xiao Xiang Zhu and Hannes Taubenböck in the IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. The researchers from the German Aerospace Center (DLR) in Oberpfaffenhofen, the EORC of the University Würzburg, and the Technical University in Munich

tackled the challenging task of classifying slums amidst noisy datasets.

 

Abstract: In the intricate landscape of mapping urban slum dynamics, the significance of robust and efficient techniques is often underestimated and remains absent in many studies. This not only hampers the comprehensiveness of research but also undermines potential solutions that could be pivotal for addressing the complex challenges faced by these settlements. With this ethos in mind, we prioritize efficient methods to detect the complex urban morphologies of slum settlements. Leveraging transfer-learning with minimal samples and estimating the probability of predictions for slum settlements, we uncover previously obscured patterns in urban structures. By using Monte Carlo Dropout, we not only enhance classification performance in noisy datasets and ambiguous feature spaces but also gauge the uncertainty of our predictions. This offers deeper insights into the model’s confidence in distinguishing slums, especially in scenarios where slums share characteristics with formal areas. Despite the inherent complexities, our custom CNN STnet stands out, delivering performance on par with renowned models like ResNet50 and Xception but with notably superior efficiency — faster training and inference, particularly with limited training samples. Combining Monte Carlo Dropout, class-weighted loss function, and class-balanced transfer-learning, we offer an efficient method to tackle the challenging task of classifying intricate urban patterns amidst noisy datasets. Our approach not only enhances AI model training in noisy datasets but also advances our comprehension of slum dynamics, especially as these uncertainties shed light on the intricate intraurban variabilities of slum settlements.

 

The full paper can be found here: https://ieeexplore.ieee.org/document/10416343

 

This study is related to earlier works in the thematic domain of slums and poverty mapping – see some examples here:

https://www.sciencedirect.com/science/article/pii/S0143622817309955

https://www.sciencedirect.com/science/article/pii/S0924271619300383

https://ieeexplore.ieee.org/document/9174807

https://www.sciencedirect.com/science/article/pii/S0264275120312531

 

you may also like:

Presentations at the EARSeL conference in Manchester

Presentations at the EARSeL conference in Manchester

Presentations at the EARSeL conference in Manchester   Dr. Marta Sapena and Dr. John Friesen represented the Earth Observation Center (EOC) of the German Aerospace Center (DLR) and our Earth Observation Research Cluster (EORC) this week at the EARSeL conference...

Our PhD candidate Ines Standfuss teaches at AniMove

Our PhD candidate Ines Standfuss teaches at AniMove

Our PhD candidate Ines Standfuss is teaching remote sensing for animal movement analysis this year at MPI at Lake Constanze. The AniMove science school has been founded more than ten years ago together with MPI and other organisations such as Smithsonian joined in the...

television and radio coverage about urban measurements

television and radio coverage about urban measurements

Our urban research got covered by TV and radio where we had the chance to explain the relevance of urban monitoring via remote sensing methods as well as in-situ devices (in cooperation with Prof. Marco Schmidt) especially for adaptation and mitigation potential of...

“Super Test Site Würzburg” – from the idea to realization

“Super Test Site Würzburg” – from the idea to realization

The "Super Test Site Würzburg" originated as an idea at the "Geolingual Studies Workshop", which our Geolingual Studies team (Prof. Biewer, Prof. Taubenböck) organized last year - we had reported on it: https://remote-sensing.org/geolingual-studies-workshop-day-1-2/ ;...

Two new Msc graduates Caroline and Helena

Two new Msc graduates Caroline and Helena

We are very happy to congratulate Caroline Goehner and Helena Wehner for successfully defending their thesis on alpine research and ibis environment analysis.  Great to see their journey through the eagle program, their technical advances, gaining hands-on...

Science and teaching at UFS

Science and teaching at UFS

The research and teaching activities of our University at the research station Schneefernerhaus on Zugspitze are increasing steadily and becoming more diverse. Ongoing and planned courses and science projects range from topics in informatics, astronomy to medicine and...