New Paper: Stratified aboveground forest biomass estimation by remote sensing data

New Paper: Stratified aboveground forest biomass estimation by remote sensing data

February 20, 2015

A new paper published recently by Int. J. Appl. Earth Obs. Geoinf. presents the results of a systhematic survey on the effects of post-stratification of sampling units on the quality of remote sensing-assisted biomass models. This is somwhat controversial to the status quo in the literature, which mostly suggests that estimates can be improved by building species- or strata-specific biomass models.

 

We analyzed the impact of stratifying forest data into three classes (broadleaved, coniferous and mixed forest). We compared predictive accuracy a) between the strata b) to a case without stratification for a set of pre-selected predictors from airborne LiDAR and hyperspectral data. The achieved RMSE and r2 diagnostic values were analyzed in a factorial design to rank the relative importance of each factor. Selected models were used for wall-to-wall mapping of biomass estimates and their associated uncertainty. The results revealed marginal advantages for the strata-specific prediction models over the unstratified ones, which were more obvious on the wall-to-wall mapped area-based predictions. Yet, further tests are necessary to establish the generality of these results. Input data type and statistical prediction method are concluded to remain the two most crucial factors for the quality of remote sensing-assisted biomass models.

A full text of this paper can be found at:

http://www.sciencedirect.com/science/article/pii/S0303243415000264

 

you may also like:

New staff member Luisa Pflumm

New staff member Luisa Pflumm

Luisa Pflumm joined the Earth Observation Research Cluster in May 2024 as part of the EcoGlob project and is working with the UAS team in the context of remote sensing for biodiversity and nature conservation. She received her Bachelor's degree in Geography from the...

New team member: Ása Dögg Adalsteinsdottir

New team member: Ása Dögg Adalsteinsdottir

Ása Dögg Adalsteinsdottir joined the Earth Observation Research Cluster in May 2024 as a member of the EO4CAM project team. After earning a bachelor's degree in geography from the University of Iceland, she moved to Germany to study in our EAGLE master's program. She...

NEW TEAM MEMBER: CHRISTIAN SCHÄFER

NEW TEAM MEMBER: CHRISTIAN SCHÄFER

Christian Schäfer joined the EO4CAM project in May 2024. He received his Master's degree in 2017 from Julius-Maximilians-Universität Würzburg (JMU), focusing on GIS-based synthesis of transboundary soil maps. During his work in the JMU BigData@Geo project, he enhanced...

GGW talk on geodata, mobility and social media

GGW talk on geodata, mobility and social media

On Monday the 13th of May our PhD students Ariane Droin and Johannes Mast were holding a talk at the Geographische Gesellschaft Würzburg organised by the Fachschaft Geographie about 'Geodaten, Mobilität und soziale Medien. Big data und die lokale Perspektive der...