new publication Detecting Moving Trucks on Roads Using Sentinel-2 Data

new publication Detecting Moving Trucks on Roads Using Sentinel-2 Data

April 7, 2022

Our EAGLE student Henrik Fisser published his M.Sc. thesis “Detecting Moving Trucks on Roads Using Sentinel-2 Data” in Remote Sensing. From the abstract: “In most countries, freight is predominantly transported by road cargo trucks. We present a new satellite remote sensing method for detecting moving trucks on roads using Sentinel-2 data. The method exploits a temporal sensing offset of the Sentinel-2 multispectral instrument, causing spatially and spectrally distorted signatures of moving objects. A random forest classifier was trained (overall accuracy: 84%) on visual-near-infrared-spectra of 2500 globally labelled targets. Based on the classification, the target objects were extracted using a developed recursive neighbourhood search. The speed and the heading of the objects were approximated. Detections were validated by employing 350 globally labelled target boxes (mean F1 score: 0.74). The lowest F1 score was achieved in Kenya (0.36), the highest in Poland (0.88). Furthermore, validated at 26 traffic count stations in Germany on in sum 390 dates, the truck detections correlate spatio-temporally with station figures (Pearson r-value: 0.82, RMSE: 43.7). Absolute counts were underestimated on 81% of the dates. The detection performance may differ by season and road condition. Hence, the method is only suitable for approximating the relative truck traffic abundance rather than providing accurate absolute counts. However, existing road cargo monitoring methods that rely on traffic count stations or very high resolution remote sensing data have limited global availability. The proposed moving truck detection method could fill this gap, particularly where other information on road cargo traffic are sparse by employing globally and freely available Sentinel-2 data. It is inferior to the accuracy and the temporal detail of station counts, but superior in terms of spatial coverage.”

read the full article here:

Fisser, H.; Khorsandi, E.; Wegmann, M.; Baier, F. Detecting Moving Trucks on Roads Using Sentinel-2 Data. Remote Sens. 2022, 14, 1595. https://doi.org/10.3390/rs14071595

you may also like:

Strengthening Scientific Networks in Côte d’Ivoire

Strengthening Scientific Networks in Côte d’Ivoire

Last week, two of our EORC members (Dr. Insa Otte and Dr. Michael Thiel) had the opportunity to visit several research institutions in Côte d’Ivoire—both in Abidjan and at the Lamto Ecological Research Station. During this visit, they gained valuable insights into the...

Field Visit to the Lamto Research Station of Côte d’Ivoire

Field Visit to the Lamto Research Station of Côte d’Ivoire

Two of our EORC staff members (Dr. Michael Thiel, Dr. Insa Otte) had the opportunity to visit the Lamto Research Station, located in the forest–savanna transition zone of central Côte d'Ivoire. Established in the 1960s, Lamto is one of West Africa’s most prominent...

new staff member: Sarah Leibrock

new staff member: Sarah Leibrock

Sarah joined the EORC in April 2025 as a PhD student in the DFG project  “SOS: Serverless-Scientific-Computing and -Engineering for Earth Observation and Sustainability Research”. After completing her Bachelor’s degree in Agricultural Biology at the University of...