New publication: Detection of Grassland Mowing Events for Germany by Combining Sentinel-1 and Sentinel-2 Time Series

New publication: Detection of Grassland Mowing Events for Germany by Combining Sentinel-1 and Sentinel-2 Time Series

April 7, 2022

Our PhD student Sophie Reinermann published her work “Detection of Grassland Mowing Events for Germany by Combining Sentinel-1 and Sentinel-2 Time Serie” in Remote Sensing. From the abstract: “Grasslands cover one-third of the agricultural area in Germany and play an important economic role by providing fodder for livestock. In addition, they fulfill important ecosystem services, such as carbon storage, water purification, and the provision of habitats. These ecosystem services usually depend on the grassland management. In central Europe, grasslands are grazed and/or mown, whereby the management type and intensity vary in space and time. Spatial information on the mowing timing and frequency on larger scales are usually not available but would be required in order to assess the ecosystem services, species composition, and grassland yields. Time series of high-resolution satellite remote sensing data can be used to analyze the temporal and spatial dynamics of grasslands. Within this study, we aim to overcome the drawbacks identified by previous studies, such as optical data availability and the lack of comprehensive reference data, by testing the time series of various Sentinel-2 (S2) and Sentinal-1 (S1) parameters and combinations of them in order to detect mowing events in Germany in 2019. We developed a threshold-based algorithm by using information from a comprehensive reference dataset of heterogeneously managed grassland parcels in Germany, obtained by RGB cameras. The developed approach using the enhanced vegetation index (EVI) derived from S2 led to a successful mowing event detection in Germany (60.3% of mowing events detected, F1-Score = 0.64). However, events shortly before, during, or shortly after cloud gaps were missed and in regions with lower S2 orbit coverage fewer mowing events were detected. Therefore, S1-based backscatter, InSAR, and PolSAR features were investigated during S2 data gaps. From these, the PolSAR entropy detected mowing events most reliably. For a focus region, we tested an integrated approach by combining S2 and S1 parameters. This approach detected additional mowing events, but also led to many false positive events, resulting in a reduction in the F1-Score (from 0.65 of S2 to 0.61 of S2 + S1 for the focus region). According to our analysis, a majority of grasslands in Germany are only mown zero to two times (around 84%) and are probably additionally used for grazing. A small proportion is mown more often than four times (3%). Regions with a generally higher grassland mowing frequency are located in southern, south-eastern, and northern Germany.”

read the full article here:

Reinermann, S.; Gessner, U.; Asam, S.; Ullmann, T.; Schucknecht, A.; Kuenzer, C. Detection of Grassland Mowing Events for Germany by Combining Sentinel-1 and Sentinel-2 Time Series. Remote Sens. 2022, 14, 1647. https://doi.org/10.3390/rs14071647

you may also like:

New staff member Luisa Pflumm

New staff member Luisa Pflumm

Luisa Pflumm joined the Earth Observation Research Cluster in May 2024 as part of the EcoGlob project and is working with the UAS team in the context of remote sensing for biodiversity and nature conservation. She received her Bachelor's degree in Geography from the...

New team member: Ása Dögg Adalsteinsdottir

New team member: Ása Dögg Adalsteinsdottir

Ása Dögg Adalsteinsdottir joined the Earth Observation Research Cluster in May 2024 as a member of the EO4CAM project team. After earning a bachelor's degree in geography from the University of Iceland, she moved to Germany to study in our EAGLE master's program. She...

NEW TEAM MEMBER: CHRISTIAN SCHÄFER

NEW TEAM MEMBER: CHRISTIAN SCHÄFER

Christian Schäfer joined the EO4CAM project in May 2024. He received his Master's degree in 2017 from Julius-Maximilians-Universität Würzburg (JMU), focusing on GIS-based synthesis of transboundary soil maps. During his work in the JMU BigData@Geo project, he enhanced...

GGW talk on geodata, mobility and social media

GGW talk on geodata, mobility and social media

On Monday the 13th of May our PhD students Ariane Droin and Johannes Mast were holding a talk at the Geographische Gesellschaft Würzburg organised by the Fachschaft Geographie about 'Geodaten, Mobilität und soziale Medien. Big data und die lokale Perspektive der...

NetCDA kick-off workshop

NetCDA kick-off workshop

Yesterday, on May 16th, the partners of the project "European Academic Network for Capacity Development in Climate Change Adaptations in Africa" (NetCDA) met to jointly and officially kick-off their project. The NetCDA team at the University of Würzburg invited all...