New Publication on Multi-target regressor chains with repetitive permutation scheme for characterization of built environments with remote sensing

New Publication on Multi-target regressor chains with repetitive permutation scheme for characterization of built environments with remote sensing

January 4, 2022

A new publication by our PhD students and PDs in International Journal of Applied Earth Observation and Geoinformation about “Multi-target regressor chains with repetitive permutation scheme for characterization of built environments with remote sensing” is available online. From the abstract: “Multi-task learning techniques allow the beneficial joint estimation of multiple target variables. Here, we propose a novel multi-task regression (MTR) method called ensemble of regressor chains with repetitive permutation scheme. It belongs to the family of problem transformation-based MTR methods which foresee the creation of an individual model per target variable. Subsequently, the combination of the separate models allows obtaining an overall prediction. Our method builds upon the concept of so-called ensemble of regressor chains which align single-target models along a flexible permutation, i.e., chain. However, in order to particularly address situations with a small number of target variables, we equip ensemble of regressor chains with a repetitive permutation scheme. Thereby, estimates of the target variables are cascaded to subsequent models as additional features when learning along a chain, whereby one target variable can occupy multiple elements of the chain. We provide experimental evaluation of the method by jointly estimating built-up height and built-up density based on features derived from Sentinel-2 data for the four largest cities in Germany in a comparative setup. We also consider single-target stacking, multi-target stacking, and ensemble of regressor chains without repetitive permutation. Empirical results underline the beneficial performance properties of MTR methods. Our ensemble of regressor chain with repetitive permutation scheme approach achieved most frequently the highest accuracies compared to the other MTR methods, whereby mean improvements across the experiments of 14.5% compared to initial single-target models could be achieved.”

read the full article at https://www.sciencedirect.com/science/article/pii/S0303243421003640?via%3Dihub

you may also like:

Science slam with Earth Observation

Science slam with Earth Observation

On November 8th the University Wuerzburg Science Slam will take place on the Campus Hubland again - this time with the head of our Department of Global Urbanization and Remote Sensing, Prof. Hannes Taubenboeck. He will present our urban research using remote sensing...

new team member Lilly Schell

new team member Lilly Schell

Lilly Schell joined the Earth Observation Research Cluster in October 2024 as a research assistant for the “Network for Capacity Development in Climate Change Adaptations in Africa” project. Her doctoral research will focus on the use of remote sensing techniques in...

Research by Jannis Midasch presented at Archaelogy conference

Research by Jannis Midasch presented at Archaelogy conference

Our EAGLE student Jannis Midasch presented his work on "Rediscovering a lost medieval castle using GIS and UAS-based remote sensing" at the Annual Meeting of the Aerial Archaelogy Research Group in York, UK this September. Jannis used various UAS/drone based...

Summer School of Alpine Research

Summer School of Alpine Research

Last week, Laura, an 8th gen EAGLE Student, participated in the Summer School of Alpine Research, conducted by the University of Innsbruck, in the beautiful location of the Austrian Oetztal in Obergurgl. The focus of the Summer School was on Close Range Sensing...