Extracting the central strip from LANDSAT 7 imagery

Extracting the central strip from LANDSAT 7 imagery

February 8, 2016

Here is a simple Python code to extract the central strip from Landsat 7 imagery (SLC-off),  that is not affected by the SLC failure. The algorithm shrinks the striping zones through a morphological filter (erosion) and creates a new shapefile AOI that extracts the desired raster extent without striping effects. The code is based on Python for ArcGIS (arcpy) – so you require a ArcGIS license.

General steps:

  1. Loop through all Landsat 7 data folders
  2. Stack bands for each image
  3. Create a mask
  4. Erode the mask by 20 pixels
  5. Convert the mask to polygon
  6. Create a minimum bounding box
  7. Clip the original raster through the bbox


import arcpy
from arcpy.sa import *

import sys,os

#  Environment settings (Activate Spatial Analyst, Overwrite Outputs allowed and TIFF compression is LZW)
arcpy.env.overwriteOutput = True
arcpy.env.compression = 'LZW'

# this is your main directory with all unzipped Landsat datasets
 rootdir = "D:\\DATA\\Landsat7\\"

# create scratch folder "temp" 
temp = "D:\\DATA\\temp\\"

# loop through directory with all unzipped Landsat 7 folders
 for files in os.listdir(rootdir):   
    files = os.path.join(rootdir, files)   
    # for each loop the subdir "files" is now the current workspace 
    # (e.g. LE71520322015157-SC20160224113319) that contains the Landsat bands
    arcpy.env.workspace = files  
    rasters = arcpy.ListRasters("*", "TIF")  
    # create empty array
    stack_liste = []  
    # loop through all rasters in subdir
    for raster in rasters:   

        image = arcpy.Raster(raster) 
        name  = image.name 
        index = name.split("_")[0]  

        # fill up the array only with the actual spectral bands        
        sr = "_sr_band"  
        if sr in raster:   

    # now stack all bands within the array
    stack_name = files + "\\" + index + "_stack.tif"    
    arcpy.CompositeBands_management(stack_liste, stack_name)  

    # convert the image stack to a mask by logical operation with an absurd value that will result in an output "0"
    con = EqualTo(stack_name, 123456789)  

    # now shrink the raster mask with value "0" by 20 pixels
    shrink = temp + "shrink"  
    shrinking = Shrink(con, 20, 0) 

    zone = temp + "zone.shp" 
    bbox = temp + "bbox.shp"  

    # conver the shrunk mask to polygon and create a minimum bounding box
    arcpy.RasterToPolygon_conversion(shrink, zone, "NO_SIMPLIFY", "VALUE") 
    arcpy.MinimumBoundingGeometry_management(zone, bbox, "RECTANGLE_BY_WIDTH", "NONE")  

    # now use that bounding box as a mask to cut out the central nadir strip from the original stack
    # Final result 
    extract = files + "\\" + index + "_aoi.tif"  
    ExtractByMask = arcpy.sa.ExtractByMask(stack_name, bbox) 


you may also like:

New PhD student Adomas Liepa

New PhD student Adomas Liepa

I started my academic career in Bergen, Norway where I studied geophysics. During my bachelor's degree I became more interested in Earth's surface and surface dynamics, rather than the interior of the Earth, which is what geophysics focuses on. After obtaining my...

Merry Christmas and a Happy New Year 2021

Merry Christmas and a Happy New Year 2021

An unprecedented year with various unexpected events and many required changes had to be managed by our department like by many other organizations as well. A challenging year is coming to an end. We at the Department of Remote Sensing at the University of Würzburg...

most recent news:

New researcher Pawel Kluter

New researcher Pawel Kluter

Pawel Kluter joined the Department of Remote Sensing as a Research Associate in November 2020. His main role is the deployment of Data Cubes in cloud environments (Front End / Back End), as well as the development of remote sensing processing routines using Python....

New PostDoc Dr Insa Otte

New PostDoc Dr Insa Otte

We are very happy to welcome Insa Otte at the Department of Remote Sensing as a new research fellow. Before joining the department, Insa worked on rainfall in-situ data and focused on extreme events. But generally, she has a great interest and experience in...