New publication: LiDAR-based simulation of tree-and stand development after bark beetle disturbances

New publication: LiDAR-based simulation of tree-and stand development after bark beetle disturbances

January 3, 2017

In a newly-published paper featuring Steven Hill and Hooman Latifi from Dept. of Remote Sensing, very high resolution remote sensing (laser scanner data and aerial orthophotos) were used in a full remote sensing-based framework to study post-disturbance tree and stand development, particularly in its early seral stages.

Future stand development on test sites 1–5 simulated for a period of 80 years. A) Number of trees (N) per test site. B) Basal area (BA) of trees per hectare. C) Mean tree height (MH). D) Tree height variation (MAD = mean absolute deviation).

 

The first step involved extraction of single trees and their allometric attributes form LiDAR-based canopy height models, after which the extracted tree locations were additionally validated by a sample based scheme implemented on aerial photos. The single tree based forest  growth simulator SILVA ver. 2.2 was then used to simulate the stand development during a 80 year simulation period. In addition, landscape and spatial point pattern metrics were calculated to assess the structural heterogeneity. The results approve that natural regeneration of post disturbed forest  stands reveal structural heterogeneity even at the early-seral stages. Furthermore, the study showed that the structural heterogeneity might already be determined in the early successional stages. following the bark beetle disturbances. This study open up interesting horizons in how remote sensing data and methods can be combined with spatial statistics to investigate early-phase forest dynamics in natural stands.

Further information on the published material can be found here.

Bibliography:

Hill, S., Latifi, H., Heurich, M., Müller, J. 2017. Individual-tree- and stand-based development following natural disturbance in a heterogeneously structured forest: a LiDAR-based approach. Ecological Informatics 38, 12-25. DOI: dx.doi.org/10.1016/j.ecoinf.2016.12.004

you may also like:

Writing in Progress Across Europe!

Writing in Progress Across Europe!

This week, members of the COST Action DSS4ES from all over Europe — including colleagues from Türkiye — have gathered at the Earth Observation Research Cluster of the University of Würzburg for a dedicated writing retreat. Our goal? To collaboratively shape the...

New study on the conservation of biodiversity in West Africa

New study on the conservation of biodiversity in West Africa

A new study by our team, led by Insa Otte, on the conflict between biodiversity conservation in protected areas and agricultural development in West Africa has been published in the journal Natur und Landschaft. The abstract: According to the Human Development Report...

New review on slums and urban deprived areas

New review on slums and urban deprived areas

Researchers from TU Darmstadt, Karlstad University in Sweden, and our Earth Observation Research Cluster (EORC) at Julius-Maximilians-University Würzburg collaborated on a new study that looks at how science addresses urban deprived areas and slums worldwide. The...

Remote Sensing for Germany #1

Remote Sensing for Germany #1

Remote Sensing for Germany #1 In a recent #DLR press release (https://www.dlr.de/de/aktuelles/nachrichten/2025/dlr-zeigt-hohe-hitzebelastung-in-deutschen-grossstaedten), our remote sensing (RS) works on heat exposure in German cities have been shown.  The...