new publication: Risk profiling of schistosomiasis using remote sensing: approaches, challenges and outlook

new publication: Risk profiling of schistosomiasis using remote sensing: approaches, challenges and outlook

April 22, 2015

walz_vector_parasites_figure1The review article lead by Yvonne Walz is published online first.  Schistosomiasis is a water-based disease that affects an estimated 250 million people, mainly in sub-Saharan Africa. The transmission of schistosomiasis is spatially and temporally restricted to freshwater bodies that contain schistosome cercariae released from specific snails that act as intermediate hosts. Our objective was to assess the contribution of remote sensing applications and to identify remaining challenges in its optimal application for schistosomiasis risk profiling in order to support public health authorities to better target control interventions.

We reviewed the literature (i) to deepen our understanding of the ecology and the epidemiology of schistosomiasis, placing particular emphasis on remote sensing; and (ii) to fill an identified gap, namely interdisciplinary research that bridges different strands of scientific inquiry to enhance spatially explicit risk profiling. As a first step, we reviewed key factors that govern schistosomiasis risk. Secondly, we examined remote sensing data and variables that have been used for risk profiling of schistosomiasis. Thirdly, the linkage between the ecological consequence of environmental conditions and the respective measure of remote sensing data were synthesised.

We found that the potential of remote sensing data for spatial risk profiling of schistosomiasis is – in principle – far greater than explored thus far. Importantly though, the application of remote sensing data requires a tailored approach that must be optimised by selecting specific remote sensing variables, considering the appropriate scale of observation and modelling within ecozones. Interestingly, prior studies that linked prevalence of Schistosoma infection to remotely sensed data did not reflect that there is a spatial gap between the parasite and intermediate host snail habitats where disease transmission occurs, and the location (community or school) where prevalence measures are usually derived from.

Our findings imply that the potential of remote sensing data for risk profiling of schistosomiasis and other neglected tropical diseases has yet to be fully exploited.

 

Yvonne Walz, Martin Wegmann, Stefan Dech, Giovanna Raso and Jürg Utzinger (2015) Risk profiling of schistosomiasis using remote sensing: approaches, challenges and outlook. Parasites & Vector http://www.parasitesandvectors.com/content/8/1/163

you may also like:

Our research introduced to the JMU president Pauli

Our research introduced to the JMU president Pauli

At the Center for Artificial Intelligence and Data Science (CAIDAS) opening last Friday on 18th of April 2024, we had the opportunity to present the research of our Earth Observation Research Cluster (EORC) and of the Earth Observation Center (EOC) of the German...

UAS mission of monastery Bronnbach

UAS mission of monastery Bronnbach

The potential of UAS data for mapping cultural heritage sites was discussed in the past months with colleagues associated with the UNESCO world heritage activities by our postdocs Dr. Mirjana Bevanda and Dr. Sarah Schönbrodt-Stitt. Based on these discussions further...

Internship Report on Tuesday, April 30 at 14:00

Internship Report on Tuesday, April 30 at 14:00

On Tuesday, April 30 Konstantin Müller will present his internship " GDELT News Analysis of the Noto Earthquake via ERNIE" at 14:00 in 01.B.03, John-Skilton-Str. 4a. : From the abstract: The analysis of socioeconomic data has gained increasing importance. The exchange...

Internship Report on Tuesday, April 23 at 12:00

Internship Report on Tuesday, April 23 at 12:00

On Tuesday, April 23rd Elly Schmid will present her internship at 12:00 in seminar room 3, John-Skilton-Str. 4a. : From the abstract: The internship was carried out as part of the HEATS-(Urban heat) Project of the Georisks team at the Earth Observation Center, which...

New building for the CAIDAS AI center opened

New building for the CAIDAS AI center opened

CAIDAS, the Center for Artificial Intelligence and Data Science ( https://www.caidas.uni-wuerzburg.de/ ), was officially opened on April 19, 2024 with prominent guests from politics and science.  Bavaria's Minister of Science Markus Blume cut the ribbon for the new...