BSc thesis “modeling species distribution in Kenya” finalised

BSc thesis “modeling species distribution in Kenya” finalised

October 20, 2014

Annika Rudolph a BSc student handed in her BSc thesis on species distribution modeling in Kenya using remote sensing data and the randomForest model. It is impressive what she achieved within 8 weeks without any prior R knowledge. All remote sensing data as well as statistical modeling were done in R, a lot of effort has also been put into the acquisition of relevant remote sensing imagery BSc_Rudolph_workflow.

 

In the passed decades global environmental changes such as climate and land-use changes and anthropogenic pressure increased. As a result the world’s biological diversity faces exceptional threat with following increasing rate of biodiversity loss. It becomes important to assess and
monitor actual or potential geographic distribution of species to prevent this ongoing loss. This has become an important component of conservation planning in recent years. A wide variety of modeling techniques have been developed for this purpose, such as remote sensing methods. These models ordinarily utilize associations between environmental variables and known species occurrence records to identify environmental conditions within which populations can be maintained. The spatial distribution of environments that are suitable for the species can then be estimated across a study region. In this study species distribution is estimated in Kenya using environmental variables derived
from remotely sensed data such as Moderate Resolution Imaging Spectroradiometer (MODIS). The focus of this work lies on the comparison between two approaches in terms of their appropriateness for predicting species distribution within the study area. The first approach
analyzes the species probability from statistics of all summed up species. The second approach examines species probability for each species and sums up statistics afterward. The results provide an overview of the predicted species probability in regard to their vicinity to Protected Areas.
For each approach the Pearson’s coefficient of correlation between observations and predictions (r2) and Receiver Operating Characteristics (ROC) is calculated. The results of the Random Forest algorithm reach a r2 of 0.49 for the first approach and 0.11 for the second approach. ROC is 0.88 for the first approach and 0.67 for the second approach. These results exhibit reasonable significance. This study showed that the predicted probability of species distribution is close to the actual probability for the first approach. The second approach is far from the actual probability.

you may also like:

A Cozy Christmas Gathering at John-Skilton-Str. 4

A Cozy Christmas Gathering at John-Skilton-Str. 4

As winter settled in and the year reached its final stretch, the community of our building, the John-Skilton-Str. 4 came together for a warm and joyful Christmas celebration. Our building—home to an impressive diversity of university units—proved once again how...

Exploring New Space Opportunities in Mainfranken

Exploring New Space Opportunities in Mainfranken

The Mainfranken region took another exciting step toward shaping its role in the future of space technologies at this week’s IHK meeting on “Allianz New Space Mainfranken” in Würzburg. The event brought together representatives from politics, academia, and industry to...

Super-Test-Site Würzburg meeting

Super-Test-Site Würzburg meeting

The team of our "Super-Test-Site Würzburg" consortium (University of Würzburg, the Karlsruhe Institute of Technology, the Friedrich-Alexander-University Erlangen-Nürnberg, Leibniz-Institute for Länderkunde in Leipzig  and the German Aerospace Center)...

A Warm and Festive Evening: The EORC Christmas Party

A Warm and Festive Evening: The EORC Christmas Party

As the year slowly draws to a close, the EORC came together this week to celebrate the season and spend an evening away from our usual desks, and classrooms. Our annual EORC Christmas Party brought together staff members, student assistants, and our current MSc...

Ideas and Inspiration: Our Internship & MSc Thesis Fair

Ideas and Inspiration: Our Internship & MSc Thesis Fair

This week we hosted our annual EORC Internship and MSc Thesis Fair, bringing together our research staff and the current cohort of EAGLE students. As always, the event offered a relaxed and welcoming atmosphere—an ideal setting for exploring future academic pathways....

Share This