new article: Spectral Mixture and Landscape Metrics Framework for Spatiotemporal Forest Cover Changes

new article: Spectral Mixture and Landscape Metrics Framework for Spatiotemporal Forest Cover Changes

April 18, 2022

A new publication combining spectral mixture analysis and landscape metrics just got published. The title is “A Spectral Mixture Analysis and Landscape Metrics Based Framework for Monitoring Spatiotemporal Forest Cover Changes”, from the abstract: “An increasing amount of Brazilian rainforest is being lost or degraded for various reasons, both anthropogenic and natural, leading to a loss of biodiversity and further global consequences. Especially in the Brazilian state of Mato Grosso, soy production and large-scale cattle farms led to extensive losses of rainforest in recent years. We used a spectral mixture approach followed by a decision tree classification based on more than 30 years of Landsat data to quantify these losses. Research has shown that current methods for assessing forest degradation are lacking accuracy. Therefore, we generated classifications to determine land cover changes for each year, focusing on both cleared and degraded forest land. The analyses showed a decrease in forest area in Mato Grosso by 28.8% between 1986 and 2020. In order to measure changed forest structures for the selected period, fragmentation analyses based on diverse landscape metrics were carried out for the municipality of Colniza in Mato Grosso. It was found that forest areas experienced also a high degree of fragmentation over the study period, with an increase of 83.3% of the number of patches and a decrease of the mean patch area of 86.1% for the selected time period, resulting in altered habitats for flora and fauna”

read the full article here:

Halbgewachs M, Wegmann M, da Ponte E. A Spectral Mixture Analysis and Landscape Metrics Based Framework for Monitoring Spatiotemporal Forest Cover Changes: A Case Study in Mato Grosso, Brazil. Remote Sensing. 2022; 14(8):1907. https://doi.org/10.3390/rs14081907

you may also like:

Succesful MSc Theseis Defense by Jean de Dieu Tuyizere

Succesful MSc Theseis Defense by Jean de Dieu Tuyizere

Congratulations to Jean de Dieu Tuyizere on the successful defense of his MSc thesis, entitled "Utilizing deep learning and Earth Observation data to predict land cover changes in Volcanoes National Park, Rwanda".   His study analyzed and projected land cover...

Writing in Progress Across Europe!

Writing in Progress Across Europe!

This week, members of the COST Action DSS4ES from all over Europe — including colleagues from Türkiye — have gathered at the Earth Observation Research Cluster of the University of Würzburg for a dedicated writing retreat. Our goal? To collaboratively shape the...

EORC at the GfÖ Annual Symposium 2025 in Würzburg

EORC at the GfÖ Annual Symposium 2025 in Würzburg

Last week, EORC staff co-organized and partizipated in the Ecological Society of Germany, Austria and Switzerland (GfÖ) Annual Symposium 2025, this year hosted at University of Würzburg. The symposium, attended by more than 600 people, covered a wide range of topics...

New study on the conservation of biodiversity in West Africa

New study on the conservation of biodiversity in West Africa

A new study by our team, led by Insa Otte, on the conflict between biodiversity conservation in protected areas and agricultural development in West Africa has been published in the journal Natur und Landschaft. The abstract: According to the Human Development Report...