Deep Neural Network Regression for Normalized Digital Surface Model Generation with Sentinel-2 Imagery

Deep Neural Network Regression for Normalized Digital Surface Model Generation with Sentinel-2 Imagery

November 15, 2023

Our EAGLE student Konstantin Müller published together with our chairholder of the Deparment of Global Urbanization and Remote Sensing, Hannes Taubenboeck an article about DL for surface model generation. The article explores methods to extract high-resolution normalized digital surface models (nDSMs) from low-resolution Sentinel-2 data, enabling the creation of large-scale models. Leveraging the open access and global coverage of Sentinel 2, the study employs deep learning models, based on the U-Net architecture, with tailored multiscale encoders and conformed self-attention to achieve a mean height error of approximately 2m.

from the abstract: In recent history, normalized digital surface models (nDSMs) have been constantly gaining importance as a means to solve large-scale geographic problems. High-resolution surface models are precious, as they can provide detailed information for a specific area. However, measurements with a high resolution are time consuming and costly. Only a few approaches exist to create high-resolution nDSMs for extensive areas. This article explores approaches to extract high-resolution nDSMs from lowresolution Sentinel-2 data, allowing us to derive large-scale models. We thereby utilize the advantages of Sentinel 2 being open access, having global coverage, and providing steady updates through a high repetition rate. Several deep learning models are trained to overcome the gap in producing high-resolution surface maps from low-resolution input data. With U-Net as a base architecture, we extend the capabilities of our model by integrating tailored multiscale encoders with differently sized kernels in the convolution as well as conformed self-attention inside the skip connection gates. Using pixelwise regression, our U-Net base models can achieve a mean height error of approximately 2 m. Moreover, through our enhancements to the model architecture, we reduce the model error by more than 7%.

Link: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10189905

you may also like:

Press release on a study on settlement patterns across borders

Press release on a study on settlement patterns across borders

A method has been developed to analyze and visualize settlement areas across borders. The study published last October (we have reported on it: https://remote-sensing.org/new-publication-on-urban-patterns-from-space-comparing-france-and-germany/ ) shows that since the...

Our Research Featured in the PLOS Showcase on Kudos!

Our Research Featured in the PLOS Showcase on Kudos!

We are excited to share that our recent study on public transport accessibility in Medellín in Colombia (we have reported on this: https://remote-sensing.org/new-publication-on-the-importance-of-semiformal-transport/ ) has been selected for the global PLOS Showcase on...

New publication on the importance of semiformal transport

New publication on the importance of semiformal transport

New publication on the importance of semiformal transport in urban areas   Researchers from the Earth Observation Center (EOC) of the German Aerospace Center (DLR) in Oberpfaffenhofen, the Institute of Transport Research of the DLR in Berlin and our Earth...

Privacy Policy

Lehrstuhl für Fernerkundung & Lehrstuhl für Urbane Fernerkundung

Erdbeobachtung an der Universität Würzburg