New paper on exploring how uncertainty quantification can improve classification of pollinating flies

New paper on exploring how uncertainty quantification can improve classification of pollinating flies

September 11, 2025

Researchers from the German Remote Sensing Data Center (DFD) of the German Aerospace Center (DLR) in Oberpfaffenhofen, the Helmholtz Centre for Environmental Research (UFZ) in Leipzig, the German Centre for Integrative Biodiversity Research (iDiv) in Leipzig, the Martin Luther University Halle-Wittenberg and our Earth Observation Research Cluster (EORC) of our Julius-Maximilians-University in Würzburg collaborated on a study exploring how uncertainty quantification can improve the classification of European pollinating flies. The paper titled “Utilizing CNNs for classification and uncertainty quantification for 15 families of European fly pollinators” was just published in PLOS One by Thomas Stark, Michael Wurm, Valentin Ștefan, Felicitas Wolf, Hannes Taubenböck & Tiffany M. Knight.

 

Here is the abstract of the paper:

Pollination is essential for maintaining biodiversity and ensuring food security, and in Europe it is primarily mediated by four insect orders (Coleoptera, Diptera, Hymenoptera, Lepidoptera). However, traditional monitoring methods are costly and time consuming. Although recent automation efforts have focused on butterflies and bees, flies, a diverse and ecologically important group of pollinators, have received comparatively little attention, likely due to the challenges posed by their subtle morphological differences. In this study, we investigate the application of Convolutional Neural Networks (CNNs) for classifying 15 European pollinating fly families and quantifying the associated classification uncertainty. In curating our dataset, we ensured that the images of Diptera captured diverse visual characteristics relevant for classification, including wing morphology and general body habitus. We evaluated the performance of three CNNs, ResNet18, MobileNetV3, and EfficientNetB4 and estimated the prediction confidence using Monte Carlo methods, combining test-time augmentation and dropout to approximate both aleatoric and epistemic uncertainty. We demonstrate the effectiveness of these models in accurately distinguishing fly families. We achieved an overall accuracy of up to 95.61%, with a mean relative increase in accuracy of 5.58% when comparing uncropped to cropped images. Furthermore, cropping images to the Diptera bounding boxes not only improved classification performance across all models but also increased mean prediction confidence by 8.56%, effectively reducing misclassifications among families. This approach represents a significant advance in automated pollinator monitoring and has promising implications for both scientific research and practical applications.

 

Here is the link to the full paper: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0323984&?utm_id=plos111

 

This paper is related to a previous studies on the topic:

·       https://www.nature.com/articles/s41598-023-43482-3

 

 

you may also like:

New review on slums and urban deprived areas

New review on slums and urban deprived areas

Researchers from TU Darmstadt, Karlstad University in Sweden, and our Earth Observation Research Cluster (EORC) at Julius-Maximilians-University Würzburg collaborated on a new study that looks at how science addresses urban deprived areas and slums worldwide. The...

Remote Sensing for Germany #1

Remote Sensing for Germany #1

Remote Sensing for Germany #1 In a recent #DLR press release (https://www.dlr.de/de/aktuelles/nachrichten/2025/dlr-zeigt-hohe-hitzebelastung-in-deutschen-grossstaedten), our remote sensing (RS) works on heat exposure in German cities have been shown.  The...

New study on invasive species in Rwanda

New study on invasive species in Rwanda

A new publication by EORC members Lilly Schell, Insa Otte, Sarah Schönbrodt-Stitt and Konstantin Müller, was just published   in the Journal Frontiers in Plant Science. Their study, “Synergistic use of satellite, legacy, and in situ data to predict spatio-temporal...

Bridging Scales: How Radar Satellites supports Crop Monitoring

Bridging Scales: How Radar Satellites supports Crop Monitoring

In an era of climate uncertainty and increasing pressure on agricultural systems, understanding how crops grow and respond to environmental stress is more important than ever. A new study led by researchers from Martin-Luther-University Halle-Wittenberg, in close...

New paper on automated pollinator monitoring using time-lapse images

New paper on automated pollinator monitoring using time-lapse images

Researchers from Helmholtz Centre for Environmental Research (UFZ) in Leipzig, the German Centre for Integrative Biodiversity Research (iDiv) in Leipzig, the Martin Luther University Halle-Wittenberg, the German Remote Sensing Data Center (DFD) of the German Aerospace...