Extracting the central strip from LANDSAT 7 imagery

Extracting the central strip from LANDSAT 7 imagery

February 8, 2016

Here is a simple Python code to extract the central strip from Landsat 7 imagery (SLC-off),  that is not affected by the SLC failure. The algorithm shrinks the striping zones through a morphological filter (erosion) and creates a new shapefile AOI that extracts the desired raster extent without striping effects. The code is based on Python for ArcGIS (arcpy) – so you require a ArcGIS license.

General steps:

  1. Loop through all Landsat 7 data folders
  2. Stack bands for each image
  3. Create a mask
  4. Erode the mask by 20 pixels
  5. Convert the mask to polygon
  6. Create a minimum bounding box
  7. Clip the original raster through the bbox

 

import arcpy
from arcpy.sa import *

import sys,os

#  Environment settings (Activate Spatial Analyst, Overwrite Outputs allowed and TIFF compression is LZW)
arcpy.CheckOutExtension("spatial")
arcpy.env.overwriteOutput = True
arcpy.env.compression = 'LZW'

# this is your main directory with all unzipped Landsat datasets
 rootdir = "D:\\DATA\\Landsat7\\"

# create scratch folder "temp" 
temp = "D:\\DATA\\temp\\"

# loop through directory with all unzipped Landsat 7 folders
 for files in os.listdir(rootdir):   
    files = os.path.join(rootdir, files)   
    
    # for each loop the subdir "files" is now the current workspace 
    # (e.g. LE71520322015157-SC20160224113319) that contains the Landsat bands
    arcpy.env.workspace = files  
    rasters = arcpy.ListRasters("*", "TIF")  
    
    # create empty array
    stack_liste = []  
    # loop through all rasters in subdir
    for raster in rasters:   

        image = arcpy.Raster(raster) 
        name  = image.name 
        index = name.split("_")[0]  

        # fill up the array only with the actual spectral bands        
        sr = "_sr_band"  
        if sr in raster:   
            stack_liste.append(raster)             

    # now stack all bands within the array
    stack_name = files + "\\" + index + "_stack.tif"    
    arcpy.CompositeBands_management(stack_liste, stack_name)  

    # convert the image stack to a mask by logical operation with an absurd value that will result in an output "0"
    con = EqualTo(stack_name, 123456789)  

    # now shrink the raster mask with value "0" by 20 pixels
    shrink = temp + "shrink"  
    shrinking = Shrink(con, 20, 0) 
    shrinking.save(shrink)  

    zone = temp + "zone.shp" 
    bbox = temp + "bbox.shp"  

    # conver the shrunk mask to polygon and create a minimum bounding box
    arcpy.RasterToPolygon_conversion(shrink, zone, "NO_SIMPLIFY", "VALUE") 
    arcpy.MinimumBoundingGeometry_management(zone, bbox, "RECTANGLE_BY_WIDTH", "NONE")  

    # now use that bounding box as a mask to cut out the central nadir strip from the original stack
    # Final result 
    extract = files + "\\" + index + "_aoi.tif"  
    ExtractByMask = arcpy.sa.ExtractByMask(stack_name, bbox) 
    ExtractByMask.save(extract)

 

you may also like:

Strengthening Scientific Networks in Côte d’Ivoire

Strengthening Scientific Networks in Côte d’Ivoire

Last week, two of our EORC members (Dr. Insa Otte and Dr. Michael Thiel) had the opportunity to visit several research institutions in Côte d’Ivoire—both in Abidjan and at the Lamto Ecological Research Station. During this visit, they gained valuable insights into the...

Field Visit to the Lamto Research Station of Côte d’Ivoire

Field Visit to the Lamto Research Station of Côte d’Ivoire

Two of our EORC staff members (Dr. Michael Thiel, Dr. Insa Otte) had the opportunity to visit the Lamto Research Station, located in the forest–savanna transition zone of central Côte d'Ivoire. Established in the 1960s, Lamto is one of West Africa’s most prominent...