M.Sc thesis: Agent-based modeling to understand Mediterranean wetland dynamic based on multiple remote sensing data

M.Sc thesis: Agent-based modeling to understand Mediterranean wetland dynamic based on multiple remote sensing data

February 8, 2017

M.Sc thesis (+ a two-month internship):

Agent-based modeling to understand Mediterranean wetland (former saltworks) dynamic based on multiple remote sensing data

 

UAV imagery over a portion of the study site. Image courtesy Cyril Fleurant (Uni Angers)

The Camargue’s former saltworks is a 6500-ha site located at the Mediterranean coast in southern France. The site has been recently purchased by the Conservatoire du Littoral, a public organization created in 1975 to ensure the protection of outstanding natural areas along the coast. The ongoing management of the area has been entrusted to the natural regional parc (PNR camargue), the national reserve of Camargue and the Tour du Valat. The site comprises a wide range of habitats. It has traditionally been home to the single colony of Flamingos nesting in France and is used by thousands of shorebirds during breeding and migration. Various construction works such as embankments (to control circulation of pumped sea-water through lagoons) and sea-front dike (to prevent uncontrolled flooding by the sea) together with salt exploitation and sea-level rise led to profound changes in the landscape that in turn call for the restoration of natural processes of coastal lagoon ecosystems. However, the conservation and management measures are restricted to be timely done as a result of difficult access for ground survey. Very high resolution remote sensing can introduce alternatives to this by providing continuous and objective surface coverage.

In this context, this M.Sc project aims at developing predictive tools on the basis of remote sensing data to follow habitat dynamics in order to help adaptive ecosystem management. The objective is to develop a method to understand the fast changes of the habitats using very high resolution remote sensing data. To this aim, LiDAR and very high resolution optical data (WorldView 2) and other GIS layers will be analyzed to produce spatially-continuous input for a state-of-the-art agent-based model. Few studies have applied this modeling approach to image analysis but the first results are promising .

Agent-based modeling will allow considering multiple non parametric factors that characterize the landscape dynamics. This approach will allow taking complex spatial and temporal processes as well as changing factors into account. The GAMA agent-based simulation platform (Taillandier et al. 2014, http://gama-platform.org/)  was initially developed to integrate GIS data in the  simulation. Within the envisaged M.Sc work this platform will be used for prediction based on the layers created from remote sensing data.

The M.Sc thesis is planned to be ideally started with a preliminary phase of two-month internship at the LETG, University of Angers . During the internship the M.Sc student will encompass a NetLogo and GAMA learning phase and gets to know the area and data.  A site visit at Tour du Valat research centre may help to understand the management objective of the area. The second phase would be the M.Sc thesis, during which the candidate will spend time at both Universities of Würzburg (4 months) and Angers (2 months). The stay in Angers is supported by an existing ERASMUS agreement between the two universities.

Interested candidates are wellcome to send an Email to Dr. Hooman Latifi.

Supervisors:

Dr. Aurélie Davranche (University of Angers, France)

Dr. Hooman Latifi (University of Würzburg)

Dr. Brigitte Poulin (Tour du Valat, France)

you may also like:

PhD position: Earth Observation of drought and fire impacts

PhD position: Earth Observation of drought and fire impacts

Job Announcement: PhD Position on EO research of Drought, Fire and Vegetation in Kruger National Park, South Africa Position: PhD ResearcherStudy Area: Kruger National Park, South AfricaApplication Deadline: until position is filledStart Date: as soon as possible...

Door picture at our newer wing

Door picture at our newer wing

To enhance navigation in our new office wing, we've introduced playful and distinctive imagery featuring our logo, alongside clever animal representations for the North and South wings. The penguin and polar bear not only add a touch of whimsy but also help our team...

Presentation at Wiener Planungswerkstatt

Presentation at Wiener Planungswerkstatt

On 16 January 2025, an evening event on the topic of urban development took place at the "Wiener Planungswerkstatt" in Vienna – see here: https://www.linkedin.com/events/wieundwowirwohnen-wollen-soziol7271805797850861569/about/. The event was organized and...

Visit to Seestadt Aspern in Vienna

Visit to Seestadt Aspern in Vienna

Vienna's Seestadt Aspern is one of the current largest urban development areas in Europe. By the 2030s, a brand new city will be fully completed in the east of Vienna. Living space for more than 25,000 people and over 20,000 jobs, education, and formation...

Exchange with colleagues from AIT Austrian Institute of Technology

Exchange with colleagues from AIT Austrian Institute of Technology

On 16 January 2025, Ariane Droin, Henri Debray and Hannes Taubenböck from EORC and the EOC of DLR were invited to the AIT Austrian Institute of Technology GmbH in Vienna as part of the UrbanSky project. The Urban Sky research project is carrying out a needs and...