new publication Detecting Moving Trucks on Roads Using Sentinel-2 Data

new publication Detecting Moving Trucks on Roads Using Sentinel-2 Data

April 7, 2022

Our EAGLE student Henrik Fisser published his M.Sc. thesis “Detecting Moving Trucks on Roads Using Sentinel-2 Data” in Remote Sensing. From the abstract: “In most countries, freight is predominantly transported by road cargo trucks. We present a new satellite remote sensing method for detecting moving trucks on roads using Sentinel-2 data. The method exploits a temporal sensing offset of the Sentinel-2 multispectral instrument, causing spatially and spectrally distorted signatures of moving objects. A random forest classifier was trained (overall accuracy: 84%) on visual-near-infrared-spectra of 2500 globally labelled targets. Based on the classification, the target objects were extracted using a developed recursive neighbourhood search. The speed and the heading of the objects were approximated. Detections were validated by employing 350 globally labelled target boxes (mean F1 score: 0.74). The lowest F1 score was achieved in Kenya (0.36), the highest in Poland (0.88). Furthermore, validated at 26 traffic count stations in Germany on in sum 390 dates, the truck detections correlate spatio-temporally with station figures (Pearson r-value: 0.82, RMSE: 43.7). Absolute counts were underestimated on 81% of the dates. The detection performance may differ by season and road condition. Hence, the method is only suitable for approximating the relative truck traffic abundance rather than providing accurate absolute counts. However, existing road cargo monitoring methods that rely on traffic count stations or very high resolution remote sensing data have limited global availability. The proposed moving truck detection method could fill this gap, particularly where other information on road cargo traffic are sparse by employing globally and freely available Sentinel-2 data. It is inferior to the accuracy and the temporal detail of station counts, but superior in terms of spatial coverage.”

read the full article here:

Fisser, H.; Khorsandi, E.; Wegmann, M.; Baier, F. Detecting Moving Trucks on Roads Using Sentinel-2 Data. Remote Sens. 2022, 14, 1595. https://doi.org/10.3390/rs14071595

you may also like:

New PhD student Lukas Block

New PhD student Lukas Block

We are pleased to welcome Lukas Block as a new PhD student.  Lukas holds a Master's degree in Geological Sciences from the Free University of Berlin, where he investigated the stratigraphic record of the Anthropocene in lacustrine sediments. He has gained...

Prof Gustau Camps-Valls visits DLR-EOC

Prof Gustau Camps-Valls visits DLR-EOC

Today we had the great pleasure to welcome Prof Gustau Camps-Valls at DLR's Earth Observation Center (EOC).   Prof Gustau Camps-Valls is a Full Professor in Electrical Engineering and leads the Image and Signal Processing (ISP) group at Universitat de València (...

New Article on Biogeomorphic Tipping Points

New Article on Biogeomorphic Tipping Points

EORC PI Florian Betz co-authored a publication on biogeomorphic tipping points arising from the DFG funded project "fluvial biogeomorphology across multiple scales". In the publication led by PhD student Isabell Becker from the Karlsruhe Institute of Technology, a...

Advancing Forest Inventory: Field Trip to Sailershausen

Advancing Forest Inventory: Field Trip to Sailershausen

Today, staff from the Earth Observation Research Cluster conducted a field trip to Sailershausen to visit three fully inventoried forest plots and to discuss examples of remote sensing applications with the forestry administration of the University of Würzburg. The...

Press Release by University of Würzburg about our Arctic research

Press Release by University of Würzburg about our Arctic research

Our work in the Arctic on Svalbard was covered by the press team of the University of Würzburg. It covers our focus on studying the region’s ecosystems and the effects of climate change on its environment using Earth Observation methods. Please see the german version...