New publication: Further progress in model-based estimation of forest understorey by LiDAR data

New publication: Further progress in model-based estimation of forest understorey by LiDAR data

January 27, 2017

In a recently-published paper in Forestry featuring Hooman Latifi, Steven Hill and Stefan Dech from the Dept. of Remote Sensing, further advancements have been reported in developing unbiased statistical models for area-based estimation of forest understorey layers using LiDAR point cloud information. The study leveraged an original high-density LiDAR point cloud, which was further processed to simulate two lower-density datasets by applying a thining approach. The data were then combnined with three statistical modeling approaches to estimate the proportions of shrub, herb and moss layers in temperate forest stands in southeastern Germany.

 

Despite the differences between our simulated data and the real-world LiDAR point clouds
of different point densities, the results of this study are thought to mostly reflect how LiDAR and forest habitat data can be combined for deriving ecologically relevant information on temperate forest understorey vegetation layers. This, in turn, increases the applicability of prediction results for overarching aims such as forest and wildlife management.

Further informaiton on the published paper can be retrieved here.

Bibliography:

Latifi, H., Hill, S., Schumann, B., Heurich, M., Dech, S. 2017. Multi-model estimation of understorey shrub, herb and moss cover in temperate forest stands by laser scanner data. Forestry, DOI:10.1093/forestry/cpw066

 

you may also like:

Five Years of Data Cube Innovations in AgriSens DEMMIN 4.0

Five Years of Data Cube Innovations in AgriSens DEMMIN 4.0

Over the past five years, we made significant advancements with our Data Cube development within the AgriSens DEMMIN 4.0 project. We enhanced the system architecture and the offerings of the Data Cube to optimize the use of remote sensing data for agricultural...

Workshop on “Geodata, (social) media data and linguistics”

Workshop on “Geodata, (social) media data and linguistics”

On 26 February 2025, a workshop on "Geodata, (social) media data and linguistics" was held at DLR in Oberpfaffenhofen. Colleagues from the German Remote Sensing Data Center (DFD) of the DLR and from the Chair of English Linguistics as well as our Earth Observation...

UAS Team Acquires high alpine snow data

UAS Team Acquires high alpine snow data

In a remarkable display of teamwork, our UAS (Unoccupied Aerial Systems) team has successfully managed to overcome some technical obstacles present since last summer on UAS data collection in steep terrain and acquired a wealth of data using lidar, multispectral, and...