New publication: Incorporating high-resolution climate, remote sensing and topographic data to map annual forest growth in central and eastern Europe

New publication: Incorporating high-resolution climate, remote sensing and topographic data to map annual forest growth in central and eastern Europe

January 26, 2024

The Earth Observation Research Cluster (EORC) just contributed to a new paper titled “Incorporating high-resolution climate, remote sensing and topographic data to map annual forest growth in central and eastern Europe” in the Journal “Science of The Total Environment”.


https://ars.els-cdn.com/content/image/1-s2.0-S0048969723083225-ga1_lrg.jpg

From the abstract: To enhance our understanding of forest carbon sequestration, climate change mitigation and drought impact on forest ecosystems, the availability of high-resolution annual forest growth maps based on tree-ring width (TRW) would provide a significant advancement to the field. Site-specific characteristics, which can be approximated by high-resolution Earth observation by satellites (EOS), emerge as crucial drivers of forest growth, influencing how climate translates into tree growth. EOS provides information on surface reflectance related to forest characteristics and thus can potentially improve the accuracy of forest growth models based on TRW. Through the modelling of TRW using EOS, climate and topography data, we showed that species-specific models can explain up to 52 % of model variance (Quercus petraea), while combining different species results in relatively poor model performance (R2 = 13 %). The integration of EOS into models based solely on climate and elevation data improved the explained variance by 6 % on average. Leveraging these insights, we successfully generated a map of annual TRW for the year 2021. We employed the area of applicability (AOA) approach to delineate the range in which our models are deemed valid. The calculated AOA for the established forest-type models was 73 % of the study region, indicating robust spatial applicability. Notably, unreliable predictions predominantly occurred in the climate margins of our dataset. In conclusion, our large-scale assessment underscores the efficacy of combining climate, EOS and topographic data to develop robust models for mapping annual TRW. This research not only fills a critical void in the current understanding of forest growth dynamics but also highlights the potential of integrated data sources for comprehensive ecosystem assessments.

Access to the full article: https://doi.org/10.1016/j.scitotenv.2023.169692

you may also like:

Presentations at the EARSeL conference in Manchester

Presentations at the EARSeL conference in Manchester

Presentations at the EARSeL conference in Manchester   Dr. Marta Sapena and Dr. John Friesen represented the Earth Observation Center (EOC) of the German Aerospace Center (DLR) and our Earth Observation Research Cluster (EORC) this week at the EARSeL conference...

Our PhD candidate Ines Standfuss teaches at AniMove

Our PhD candidate Ines Standfuss teaches at AniMove

Our PhD candidate Ines Standfuss is teaching remote sensing for animal movement analysis this year at MPI at Lake Constanze. The AniMove science school has been founded more than ten years ago together with MPI and other organisations such as Smithsonian joined in the...

television and radio coverage about urban measurements

television and radio coverage about urban measurements

Our urban research got covered by TV and radio where we had the chance to explain the relevance of urban monitoring via remote sensing methods as well as in-situ devices (in cooperation with Prof. Marco Schmidt) especially for adaptation and mitigation potential of...

“Super Test Site Würzburg” – from the idea to realization

“Super Test Site Würzburg” – from the idea to realization

The "Super Test Site Würzburg" originated as an idea at the "Geolingual Studies Workshop", which our Geolingual Studies team (Prof. Biewer, Prof. Taubenböck) organized last year - we had reported on it: https://remote-sensing.org/geolingual-studies-workshop-day-1-2/ ;...

Two new Msc graduates Caroline and Helena

Two new Msc graduates Caroline and Helena

We are very happy to congratulate Caroline Goehner and Helena Wehner for successfully defending their thesis on alpine research and ibis environment analysis.  Great to see their journey through the eagle program, their technical advances, gaining hands-on...

Science and teaching at UFS

Science and teaching at UFS

The research and teaching activities of our University at the research station Schneefernerhaus on Zugspitze are increasing steadily and becoming more diverse. Ongoing and planned courses and science projects range from topics in informatics, astronomy to medicine and...