New publication: LiDAR-based simulation of tree-and stand development after bark beetle disturbances

New publication: LiDAR-based simulation of tree-and stand development after bark beetle disturbances

January 3, 2017

In a newly-published paper featuring Steven Hill and Hooman Latifi from Dept. of Remote Sensing, very high resolution remote sensing (laser scanner data and aerial orthophotos) were used in a full remote sensing-based framework to study post-disturbance tree and stand development, particularly in its early seral stages.

Future stand development on test sites 1–5 simulated for a period of 80 years. A) Number of trees (N) per test site. B) Basal area (BA) of trees per hectare. C) Mean tree height (MH). D) Tree height variation (MAD = mean absolute deviation).

 

The first step involved extraction of single trees and their allometric attributes form LiDAR-based canopy height models, after which the extracted tree locations were additionally validated by a sample based scheme implemented on aerial photos. The single tree based forest  growth simulator SILVA ver. 2.2 was then used to simulate the stand development during a 80 year simulation period. In addition, landscape and spatial point pattern metrics were calculated to assess the structural heterogeneity. The results approve that natural regeneration of post disturbed forest  stands reveal structural heterogeneity even at the early-seral stages. Furthermore, the study showed that the structural heterogeneity might already be determined in the early successional stages. following the bark beetle disturbances. This study open up interesting horizons in how remote sensing data and methods can be combined with spatial statistics to investigate early-phase forest dynamics in natural stands.

Further information on the published material can be found here.

Bibliography:

Hill, S., Latifi, H., Heurich, M., Müller, J. 2017. Individual-tree- and stand-based development following natural disturbance in a heterogeneously structured forest: a LiDAR-based approach. Ecological Informatics 38, 12-25. DOI: dx.doi.org/10.1016/j.ecoinf.2016.12.004

you may also like:

RIESGOS project completion

RIESGOS project completion

Today, the six-year international project RIESGOS, led by DLR-DFD, funded by the Federal Ministry of Education and Research (BMBF) came to a successful completion. Dr. Elisabeth Schoepfer from DLR-DFD – one of our guest lecturers here at EORC – led this...

Experiencing rural Würzburg – NetCDA on a cultural exchange

Experiencing rural Würzburg – NetCDA on a cultural exchange

This week we went with our guest graduate students from West Africa on a small trip to some rural areas of Würzburg. Cultural exchange is an important component for our students – for some students it is their first visit to Germany, often also to Europe. Thus,...

Kickoff Meeting of the FluBig Project

Kickoff Meeting of the FluBig Project

On Tuesday, 27th of February, the kickoff meeting of the DFG funded projected FluBig took place at the EORC in Würzburg. Jointly with colleagues from the Karlsruhe Institute of Technology, Catholic University Eichstätt-Ingolstadt and Earth Observation Research...

University press covered our high alpine activity

University press covered our high alpine activity

The university press featured our activity in the Alps on the research station "Schneefernerhaus" close to Zugspitze. Together with other research groups of our university we aim to conduct various field data acquisitions e.g. in collaboration with the biology...

High alpine and snow training

High alpine and snow training

In collaboration with the German Alpine Club (DAV), Laura, one of our EAGLE students and Clara, a student assistant at our institute, recently participated in avalanche rescue training aimed at equipping individuals with essential skills and knowledge to respond...