New Publication: Monitoring spatiotemporal soil moisture variability in the unsaturated zone of a mixed forest using electrical resistivity tomography

New Publication: Monitoring spatiotemporal soil moisture variability in the unsaturated zone of a mixed forest using electrical resistivity tomography

March 17, 2023

New publication by our colleagues Julia Rieder (Chair of Forest Botany at TU Dresden & University of Würzburg) and Christof Kneisel (Department of Physical Geography at University of Würzburg) about soil moisture variability in forest soils combining geophysical methods and 3D-laser scanning.

Read the full article here (open access): https://doi.org/10.1002/vzj2.20251

abstract: European forests are suffering considerably from the consequences of the droughts of recent years, and the exact reasons and influencing factors for this are still not fully understood. This study was conducted to characterize the changes and dynamics of soil moisture in a mixed forest in northern Bavaria within 1 year. Since electrical resistivity correlates well with soil water content, we used two-dimensional electrical resistivity tomography (ERT) monitoring and time-lapse analyses to supplement punctual measurements by sensors and soil analyses to show soil moisture changes throughout a whole year (2020–2021). While the topsoil dries out significantly from summer to autumn down to a depth of about 3 m, a clear increase in soil water content and a decrease in resistivity below 3 m can be observed during winter period. Anomalies in the topsoil (0–1 m) showing lower resistivities than the surrounding substrate could be related to tree positions by additional terrestrial laser scans. A significant relationship could be found between tree crown projection area and resistivity in 1–2 m depth. We found a trend that mean resistivity below pine is lower as below beech. ERT data were also used to estimate the soil water content via Archie’s law and the results correlate strongly with the measured values, but the degree of correlation varies depending on the depth level. ERT as a noninvasive method, in combination with additional data, for example, on the vitality status of individual trees, could help to better understand root water uptake and water supply to trees, especially during periods of drought.

 

 

 

you may also like:

Our research site and project covered by BR

Our research site and project covered by BR

The University forest at Sailershausen is a unique forest owned by the University of Wuerzburg. It comes with a high diversity of trees and most important is part of various research projects. We conducted various UAS/UAV/drone flights with Lidar, multispectral and...

Meeting of the FluBig Project Team

Meeting of the FluBig Project Team

During the last two days, the team of the FluBig project (remote-sensing.org/new-dfg-project-on-fluvial-research/) met at the EORC for discussing the ongoing work on fluvial biogeomorphology. After returning from a successful field expedition to Kyrgyzstan a couple of...

‘Super Test Site Würzburg’ project meeting

‘Super Test Site Würzburg’ project meeting

After the successful "Super Test Site Würzburg" measurement campaign in June (please see here: https://remote-sensing.org/super-test-site-wurzburg-from-the-idea-to-realization/ ), the core team from the University of Würzburg, the Karlsruhe Institute of Technology,...

EORC Talk: Geolingual Studies: A New Research Direction

EORC Talk: Geolingual Studies: A New Research Direction

On July 19th, Lisa Lehnen and Richard Lemoine Rodríguez, two postdoctoral researchers of the Geolingual Studies project, gave an inspiring presentation at the EORC talk series.   In the talk titled "Geolingual Studies – a new research direction", they...

EO support for UrbanPArt field work

EO support for UrbanPArt field work

From May to September, Karla Wenner, a PhD student at the Juniorprofessorship for Applied Biodiversity Science, will be sampling urban green spaces and semi-natural grasslands in Würzburg as part of the UrbanPArt project. Our cargo bikes support the research project...

Cinematic drone shots

Cinematic drone shots

We spend quite some time in the field conducting field work, from lidar measurements to vegetation samples in order to correlate it with remote sensing data to answer various research questions concerning global change. Field work is always a 24/7 work load and...