New publication of small water body mapping

New publication of small water body mapping

November 4, 2022

New paper by Hannes Taubenböck and team titled “Mapping of small water bodies with integrated spatial information for time series images of optical remote sensing”.

https://www.sciencedirect.com/science/article/pii/S0022169422011507?dgcid=author

Abstract: Small water bodies and their temporal changes are, especially in urban areas, closely related to people’s daily life and they have an impact on the living environment. For small water bodies mapping with optical remote sensing images, it is challenging to establish a balance between reducing incorrect water detection and increasing the integrity of water extraction. For time-series application, the temporal variability of the spectral information is also challenging for the widely used threshold methods, which are frequently solely based on spectral analysis. In

this work we propose a spatial information-integrated small water bodies mapping (SWM) method to achieve a complete and accurate extraction and temporal change monitoring of small water bodies in complex urban environments. Our strategy is to make use of the spatial contextual information to account for the indistinguishability of small water bodies in spectral information. The roughness of the water index is calculated to enhance the contrast between water bodies and other thematic classes eventually present in the imagery. The proposed SWM was applied to different water indexes with an automatic threshold determination. We tested the effectiveness of the proposed algorithm using Landsat and Sentinel-2 multispectral data from three different urban environments (Shanghai, Guangzhou, and Wuhan in China) which include a variety of river courses and lakes. Nantan Lake of China is selected as a representative experimental area to test the SWM method by generating the inter- and intra-year water results. Overall accuracy (OA), F1 score (F1), producer’s accuracy (PA), and user’s accuracy (UA) were used to quantitatively evaluate the accuracy of the algorithm. Compared with the four state-of-the-art water detection methods (supervised random forest classification, hierarchical

clustering, multi-band threshold, and modified normalized difference water index (MNDWI)), the proposed SWM algorithm achieves better water extraction performance. Small water bodies are found to be extracted more completely and incorrect water extractions are alleviated. The overall accuracy of the SWM algorithm achieves an average of approx. 97% (OA) and 0.95 (F1). The long-time sequence (from 2007 to 2021) and the short-time in

you may also like:

Presentation at the Biomet conference

Presentation at the Biomet conference

Presentation at the Biomet conference   Last week, our team participated in the Biomet conference organized by the German Meteorological Service (DWD) and the German Meteorological Society (DMG). Held in Offenbach am Main, this conference brought together experts...

New publication on urban expansion simulation

New publication on urban expansion simulation

New publication on urban expansion simulation   Researchers from the Swiss Federal Institute of Technology of the ETH Zurich, the Department of Architecture of the University of Cambridge and the Earth Observation Center (EOC) of the German Aerospace Center (DLR)...

EAGLE workshop on Earth Observation application

EAGLE workshop on Earth Observation application

Our first EAGLE workshop on Earth Observation applications covered various topics. After a heartily welcome by Tobias Ullmann did more than 50 participants listen to the following talks:     Ása Aðalsteinsdóttir: “SAR Monitoring in Iceland”     Katrin Wernicke:...