New publication on object detection models for locating and classifying flower‑visiting arthropods in images

New publication on object detection models for locating and classifying flower‑visiting arthropods in images

September 30, 2023

New publication on object detection models for locating and classifying flowervisiting arthropods in images

 

Researchers from the Earth Observation Center (EOC) of the German Aerospace Center (DLR) in Oberpfaffenhofen, the Department of Community Ecology of the Helmholtz Centre for Environmental Research (UFZ) in Halle, the German Centre for Integrative Biodiversity Research (iDiv) in Halle-Jena-Leipzig, the Institute of Biology of the Martin Luther University Halle-Wittenberg in Halle and our Earth Observation Research Cluster of the University of Würzburg teamed up for a study on object detection models for locating and classifying flowervisiting arthropods in images. The paper titled “YOLO object detection models can locate and classify broad groups of flowervisiting arthropods in images” was just published in the Scientific Reports journal by Thomas Stark, Valentin Ştefan, Michael Wurm, Robin Spanier, Hannes Taubenböck and Tiffany M. Knight. This study has been conducted as part of the project “Pollination Artificial Intelligence (PAI)” funded by the Helmholtz AI initiative (Information & Data Science) Pollination Artificial Intelligence (ZT-I-PF-5-115), lead by Prof. Tiffany M. Knight and Prof. Hannes Taubenböck.

 

Here is the abstract: Development of image recognition AI algorithms for flower-visiting arthropods has the potential to revolutionize the way we monitor pollinators. Ecologists need light-weight models that can be deployed in a field setting and can classify with high accuracy. We tested the performance of three deep learning light-weight models, YOLOv5nano, YOLOv5small, and YOLOv7tiny, at object recognition and classification in real time on eight groups of flower-visiting arthropods using open-source image data. These eight groups contained four orders of insects that are known to perform the majority of pollination services in Europe (Hymenoptera, Diptera, Coleoptera, Lepidoptera) as well as other arthropod groups that can be seen on flowers but are not typically considered pollinators (e.g., spiders-Araneae). All three models had high accuracy, ranging from 93 to 97%. Intersection over union (IoU) depended on the relative area of the bounding box, and the models performed best when a single arthropod comprised a large portion of the image and worst when multiple small arthropods were together in a single image. The model could accurately distinguish flies in the family Syrphidae from the Hymenoptera that they are known to mimic. These results reveal the capability of existing YOLO models to contribute to pollination monitoring.

 

Here is the link to the full paper: https://www.nature.com/articles/s41598-023-43482-3#Sec11

 

you may also like:

Deep learning course by Thorsten Hoeser

Deep learning course by Thorsten Hoeser

This week Thorsten Hoeser, an expert in deep learning and data science, taught AI methods in remote sensing at our International EAGLE Earth Observation MSc Program. In this special module, Thorsten covered essential topics on the cutting-edge techniques for...

New Team Member: Sofia Haag

New Team Member: Sofia Haag

Sofia Haag joined the EORC in February 2025 as a research assistant for the EO4CAM project. After completing her Bachelor's degree in Geography at the University of Heidelberg, she pursued her Master's in Applied Physical Geography at the University of Würzburg. Sofia...

“Super-Test-Site Würzburg” consortium meeting

“Super-Test-Site Würzburg” consortium meeting

The core team of our “Super-Test-Site Würzburg” consortium (University of Würzburg, the Karlsruhe Institute of Technology, the Friedrich-Alexander-University Erlangen-Nürnberg and the German Aerospace Center) met again in Würzburg on the 18th of February 2025....