New publication on semi-supervised learning for classification of remote sensing image data

New publication on semi-supervised learning for classification of remote sensing image data

December 2, 2023

Researchers of the Earth Observation Center (EOC) of the German Aerospace Center (DLR), the Department of Geography of the University of Bonn, and our Earth Observation Research Cluster of the University Würzburg teamed up for a study on semi-supervised learning for classification of remote sensing image data. The paper titled “Semi-supervised learning with constrained virtual support vector machines for classification of remote sensing image data” was just published in the International Journal of Applied Earth Observation and Geoinformation by Christian Geiß, Patrick Aravena Pelizari, Ozan Tunçbilek and Hannes Taubenböck. This study has been conducted within the research project RIESGOS 2.0 (03G0905A-B), which is funded by the German Federal Ministry of Education and Research (BMBF).

 

Here is the abstract: We introduce two semi-supervised models for the classification of remote sensing image data. The models are built upon the framework of Virtual Support Vector Machines (VSVM). Generally, VSVM follow a two-step learning procedure: A Support Vector Machines (SVM) model is learned to determine and extract labeled samples that constitute the decision boundary with the maximum margin between thematic classes, i.e., the Support Vectors (SVs). The SVs govern the creation of so-called virtual samples. This is done by modifying, i.e., perturbing, the image features to which a decision boundary needs to be invariant. Subsequently, the classification model is learned for a second time by using the newly created virtual samples in addition to the SVs to eventually find a new optimal decision boundary. Here, we extend this concept by (i) integrating a constrained set of semilabeled samples when establishing the final model. Thereby, the model constrainment, i.e., the selection mechanism for including solely informative semi-labeled samples, is built upon a self-learning procedure composed of two active learning heuristics. Additionally, (ii) we consecutively deploy semi-labeled samples for the creation of semi-labeled virtual samples by modifying the image features of semi-labeled samples that have become semi-labeled SVs after an initial model run. We present experimental results from classifying two multispectral data sets with a sub-meter geometric resolution. The proposed semi-supervised VSVM models exhibit the most favorable performance compared to related SVM and VSVM-based approaches, as well as (semi-) supervised CNNs, in situations with a very limited amount of available prior knowledge, i.e., labeled samples.

 

Please find here the link to the full paper: https://www.sciencedirect.com/science/article/pii/S1569843223003953

 

This works adds to various earlier research studies focusing on the classification of remote sensing Imagery. Here are some examples:

 

 

you may also like:

Five Years of Data Cube Innovations in AgriSens DEMMIN 4.0

Five Years of Data Cube Innovations in AgriSens DEMMIN 4.0

Over the past five years, we made significant advancements with our Data Cube development within the AgriSens DEMMIN 4.0 project. We enhanced the system architecture and the offerings of the Data Cube to optimize the use of remote sensing data for agricultural...

Workshop on “Geodata, (social) media data and linguistics”

Workshop on “Geodata, (social) media data and linguistics”

On 26 February 2025, a workshop on "Geodata, (social) media data and linguistics" was held at DLR in Oberpfaffenhofen. Colleagues from the German Remote Sensing Data Center (DFD) of the DLR and from the Chair of English Linguistics as well as our Earth Observation...

UAS Team Acquires high alpine snow data

UAS Team Acquires high alpine snow data

In a remarkable display of teamwork, our UAS (Unoccupied Aerial Systems) team has successfully managed to overcome some technical obstacles present since last summer on UAS data collection in steep terrain and acquired a wealth of data using lidar, multispectral, and...