New publication on the impacts of different urban expansion patterns on vegetation net primary productivity

New publication on the impacts of different urban expansion patterns on vegetation net primary productivity

December 2, 2022

New publication on the impacts of different urban expansion patterns on vegetation net primary productivity

 

A new paper titledGreen cities cost more green: Examining the impacts of different urban expansion patterns on NPP” was just published in the Journal Building and Environment by Jing Zhong, Limin Jiao, Ariane Droin, Jiafeng Liu, Xihong Lian & Hannes Taubenböck 

 

 

From the Abstract: Urban expansion patterns whether rather “dispersed” or “compact”, have profound impacts on vegetation net primary productivity (NPP), which substantially alters the ecosystem functioning and its resources. However, there remains limited understanding of which pattern is more conducive towards NPP. Different studies have different and even contradictory views. Hence, to better understand the relationship of NPP and the underlying urban spatial patterns further research is needed. In this study, we compare the impacts of different urban expansion patterns on NPP at varying scales for the time period of 2000–2020. We exemplify this for differing city types in China (Chengdu and Hangzhou) and the USA (Chicago and Raleigh). The results showed cities with dispersed spatial patterns caused higher NPP loss rates (17.93%) than cities with compact spatial patterns (10.40%). The majority of NPP loss (more than 72%) caused by urbanization occurred predominantly in suburban and urban fringe areas. In both, suburban and urban fringe areas, the American cities with low population density and dispersed expansion patterns showed more NPP loss per new urban resident (880.713–8076.308 Mg C 10− 4 persons) as well as more NPP loss per square kilometer of built-up land (51.480–881.737 Mg C km− 2). The dispersed spatial pattern with high green space ratios significantly alleviated the NPP loss at the local scale but caused more overall NPP loss for the entire city. These findings shed new light on the scale dependence of urbanization-induced impacts on vegetation, and thus, help to better understand the effects of urban expansion patterns on our environment from local to planetary scales. 

 

Read the full article here: https://www.sciencedirect.com/science/article/pii/S0360132322011064?dgcid=coauthor  

 

 

 

you may also like:

Our research site and project covered by BR

Our research site and project covered by BR

The University forest at Sailershausen is a unique forest owned by the University of Wuerzburg. It comes with a high diversity of trees and most important is part of various research projects. We conducted various UAS/UAV/drone flights with Lidar, multispectral and...

Meeting of the FluBig Project Team

Meeting of the FluBig Project Team

During the last two days, the team of the FluBig project (remote-sensing.org/new-dfg-project-on-fluvial-research/) met at the EORC for discussing the ongoing work on fluvial biogeomorphology. After returning from a successful field expedition to Kyrgyzstan a couple of...

‘Super Test Site Würzburg’ project meeting

‘Super Test Site Würzburg’ project meeting

After the successful "Super Test Site Würzburg" measurement campaign in June (please see here: https://remote-sensing.org/super-test-site-wurzburg-from-the-idea-to-realization/ ), the core team from the University of Würzburg, the Karlsruhe Institute of Technology,...

EORC Talk: Geolingual Studies: A New Research Direction

EORC Talk: Geolingual Studies: A New Research Direction

On July 19th, Lisa Lehnen and Richard Lemoine Rodríguez, two postdoctoral researchers of the Geolingual Studies project, gave an inspiring presentation at the EORC talk series.   In the talk titled "Geolingual Studies – a new research direction", they...

EO support for UrbanPArt field work

EO support for UrbanPArt field work

From May to September, Karla Wenner, a PhD student at the Juniorprofessorship for Applied Biodiversity Science, will be sampling urban green spaces and semi-natural grasslands in Würzburg as part of the UrbanPArt project. Our cargo bikes support the research project...

Cinematic drone shots

Cinematic drone shots

We spend quite some time in the field conducting field work, from lidar measurements to vegetation samples in order to correlate it with remote sensing data to answer various research questions concerning global change. Field work is always a 24/7 work load and...