New Publication: Potential of Airborne LiDAR Derived Vegetation Structure for the Prediction of Animal Species Richness at Mount Kilimanjaro

New Publication: Potential of Airborne LiDAR Derived Vegetation Structure for the Prediction of Animal Species Richness at Mount Kilimanjaro

February 15, 2022

We are glad to share with you our newest publication on “Potential of Airborne LiDAR Derived Vegetation Structure for the Prediction of Animal Species Richness at Mount Kilimanjaro ” in the open-access journal Remote Sensing by MDPI.

From the abstract: The monitoring of species and functional diversity is of increasing relevance for the development of strategies for the conservation and management of biodiversity. Therefore, reliable estimates of the performance of monitoring techniques across taxa become important. Using a unique dataset, this study investigates the potential of airborne LiDAR-derived variables characterizing vegetation structure as predictors for animal species richness at the southern slopes of Mount Kilimanjaro. To disentangle the structural LiDAR information from co-factors related to elevational vegetation zones, LiDAR-based models were compared to the predictive power of elevation models. 17 taxa and 4 feeding guilds were modeled and the standardized study design allowed for a comparison across the assemblages. Results show that most taxa (14) and feeding guilds (3) can be predicted best by elevation with normalized RMSE values but only for three of those taxa and two of those feeding guilds the difference to other models is significant. Generally, modeling performances between different models vary only slightly for each assemblage. For the remaining, structural information at most showed little additional contribution to the performance. In summary, LiDAR observations can be used for animal species prediction. However, the effort and cost of aerial surveys are not always in proportion with the prediction quality, especially when the species distribution follows zonal patterns, and elevation information yields similar results.

Full article: Ziegler A, Meyer H, Otte I, Peters MK, Appelhans T, Behler C, Böhning-Gaese K, Classen A, Detsch F, Deckert J, Eardley CD, Ferger SW, Fischer M, Gebert F, Haas M, Helbig-Bonitz M, Hemp A, Hemp C, Kakengi V, Mayr AV, Ngereza C, Reudenbach C, Röder J, Rutten G, Schellenberger Costa D, Schleuning M, Ssymank A, Steffan-Dewenter I, Tardanico J, Tschapka M, Vollstädt MGR, Wöllauer S, Zhang J, Brandl R, Nauss T. Potential of Airborne LiDAR Derived Vegetation Structure for the Prediction of Animal Species Richness at Mount Kilimanjaro. Remote Sensing. 2022; 14(3):786. https://doi.org/10.3390/rs14030786

you may also like:

Advancing Paleontology Research with Multi-Sensor UAS Data

Advancing Paleontology Research with Multi-Sensor UAS Data

We are excited to share the progress of our recent collaboration with Prof. Martin Sander, focusing on the use of multi-sensor UAS data for paleontology research. This partnership aims to explore innovative approaches to mapping and analyzing fossil sites with high...

EO4CAM at the 7th Climate Conference in Veitshöchheim

EO4CAM at the 7th Climate Conference in Veitshöchheim

We are happy to share that two of our Earth Observation Research Cluster (EORC) colleagues, John Friesen and Sarah Schönbrodt-Stitt, were invited to present at the 7th Climate Conference on April 2nd in Veitshöchheim. This event, organized by the Energieagentur...

EORC board meeting 2025

EORC board meeting 2025

This week, the annual board meeting of our EORC (Earth Observation Research Cluster) took place, bringing together the members to discuss and deliberate on several strategic and organisational issues. The meeting served as a platform for board members to share...

Congratulations to Alexandra Bell on Her Successful PhD Defense!

Congratulations to Alexandra Bell on Her Successful PhD Defense!

We are pleased to congratulate Alexandra Bell on the successful defense of her PhD thesis, which explored the role of Earth Observation (EO) data in political decision-making. In her research, Alexandra examined how EO technologies interact with political processes,...

New PhD student Lukas Block

New PhD student Lukas Block

We are pleased to welcome Lukas Block as a new PhD student.  Lukas holds a Master's degree in Geological Sciences from the Free University of Berlin, where he investigated the stratigraphic record of the Anthropocene in lacustrine sediments. He has gained...