new publication: Risk profiling of schistosomiasis using remote sensing: approaches, challenges and outlook

new publication: Risk profiling of schistosomiasis using remote sensing: approaches, challenges and outlook

April 22, 2015

walz_vector_parasites_figure1The review article lead by Yvonne Walz is published online first.  Schistosomiasis is a water-based disease that affects an estimated 250 million people, mainly in sub-Saharan Africa. The transmission of schistosomiasis is spatially and temporally restricted to freshwater bodies that contain schistosome cercariae released from specific snails that act as intermediate hosts. Our objective was to assess the contribution of remote sensing applications and to identify remaining challenges in its optimal application for schistosomiasis risk profiling in order to support public health authorities to better target control interventions.

We reviewed the literature (i) to deepen our understanding of the ecology and the epidemiology of schistosomiasis, placing particular emphasis on remote sensing; and (ii) to fill an identified gap, namely interdisciplinary research that bridges different strands of scientific inquiry to enhance spatially explicit risk profiling. As a first step, we reviewed key factors that govern schistosomiasis risk. Secondly, we examined remote sensing data and variables that have been used for risk profiling of schistosomiasis. Thirdly, the linkage between the ecological consequence of environmental conditions and the respective measure of remote sensing data were synthesised.

We found that the potential of remote sensing data for spatial risk profiling of schistosomiasis is – in principle – far greater than explored thus far. Importantly though, the application of remote sensing data requires a tailored approach that must be optimised by selecting specific remote sensing variables, considering the appropriate scale of observation and modelling within ecozones. Interestingly, prior studies that linked prevalence of Schistosoma infection to remotely sensed data did not reflect that there is a spatial gap between the parasite and intermediate host snail habitats where disease transmission occurs, and the location (community or school) where prevalence measures are usually derived from.

Our findings imply that the potential of remote sensing data for risk profiling of schistosomiasis and other neglected tropical diseases has yet to be fully exploited.

 

Yvonne Walz, Martin Wegmann, Stefan Dech, Giovanna Raso and Jürg Utzinger (2015) Risk profiling of schistosomiasis using remote sensing: approaches, challenges and outlook. Parasites & Vector http://www.parasitesandvectors.com/content/8/1/163

you may also like:

EAGLEs at DLR DFD LAX

EAGLEs at DLR DFD LAX

As part of the lecture by Claudia Künzer all EAGLEs of her course also visit the Earth Observation Center of DLR in Oberfpaffenhofen and listen to various talks by remote sensing scientists working in Oberpfaffenhofen: Patrick Sogno, an EAGLE alumni and also PhD...

Xmas sweet tasting event

Xmas sweet tasting event

Our PostDocs organised a Xmas season tasting event with more than 10 different typical German sweets usually served in the pre-mas season.  Various dishes were prepared by them or ordered from the place of origin eg lebkuchen, aachener printen or stollen from eg...

Research on the UFS

Research on the UFS

The Earth Observation Research Cluster (EORC) is already conducting research on and around the highest mountain of Germany, Zugspitze and from next year our University will also be formally affiliated with the research station at Zugspitze (UFS). We are very much...

Contribution to the Geo-IT podcast of gis.Radio

Contribution to the Geo-IT podcast of gis.Radio

  For a new contribution to the Geo-IT podcast gis.Radio, Andreas Eicher interviewed our Professor Hannes Taubenböck about his recent talk at the Geographic Society Würzburg. We have reported on this talk:...