new publication: The Role of Vegetation in Mitigating Urban Land Surface Temperatures

new publication: The Role of Vegetation in Mitigating Urban Land Surface Temperatures

April 21, 2015

The publication by our former MSc student Sadroddin Alavipanah has been published. The article “The Role of Vegetation in Mitigating Urban Land Surface Temperatures: A Case Study of Munich, Germany during the Warm Season” is the result of his MSc thesis within the Global Change Ecology study program.

abstract: The Urban Heat Island (UHI) is the phenomenon of altered increased temperatures in urban areas compared to their rural surroundings. UHIs grow and intensify under extreme hot periods, such as during heat waves, which can affect human health and also increase the demand for energy for cooling. This study applies remote sensing and land use/land cover (LULC) data to assess the cooling effect of varying urban vegetation cover, especially during extreme warm periods, in the city of Munich, Germany. To compute the relationship between Land Surface Temperature (LST) and Land Use Land Cover (LULC), MODIS eight-day interval LST data for the months of June, July and August from 2002 to 2012 and the Corine Land Cover (CLC) database were used. Due to similarities in the behavior of surface temperature of different CLCs, some classes were reclassified and combined to form two major, rather simplified, homogenized classes: one of built-up area and one of urban vegetation. The homogenized map was merged with the MODIS eight-day interval LST data to compute the relationship between them. The results revealed that (i) the cooling effect accrued from urban vegetation tended to be non-linear; and (ii) a remarkable and stronger cooling effect in terms of LST was identified in regions where the proportion of vegetation cover was between seventy and almost eighty percent per square kilometer. The results also demonstrated that LST within urban vegetation was affected by the temperature of the surrounding built-up and that during the well-known European 2003 heat wave, suburb areas were cooler from the core of the urbanized region. This study concluded that the optimum green space for obtaining the lowest temperature is a non-linear trend. This could support urban planning strategies to facilitate appropriate applications to mitigate heat-stress in urban area.

Alavipanah, S.; Wegmann, M.; Qureshi, S.; Weng, Q.; Koellner, T. The Role of Vegetation in Mitigating Urban Land Surface Temperatures: A Case Study of Munich, Germany during the Warm Season. Sustainability 2015, 7, 4689-4706.

you may also like:

Our PhD Wall is Growing — and So Is Our Research Family!

Our PhD Wall is Growing — and So Is Our Research Family!

It’s been a remarkable year for our research team! The PhD Wall of Fame, showcasing all past and current doctoral researchers, has officially reached its limits — and we’ve had to expand it to make room for even more success stories. So far six PhD defenses have taken...

🎉 A Sweet Surprise for a Special Birthday!

🎉 A Sweet Surprise for a Special Birthday!

At our department, we not only work hard together — we also celebrate the milestones that make our team so special. This week, we had the joy of surprising our wonderful secretary Tine Linge on her 60th birthday! Early in the morning, colleagues gathered to prepare a...

Contribution at SilviLaser Conference in Quebec

Contribution at SilviLaser Conference in Quebec

At SilviLaser 2025 in Québec City, PhD candidate Julia Rieder (EORC, University of Würzburg and staff member of EO4CAM) presented her work on "European Beech under Drought: Effects of Topography, Competition and Soil Water Availability." Her study uses LiDAR to reveal...

EORC at Remote Sensing Symposium in Darmstadt

EORC at Remote Sensing Symposium in Darmstadt

On 2 October 2025, Dr. John Friesen and Dr. Julian Fäth from the Earth Observation Research Cluster (EORC) at the University of Würzburg and staff members of EO4CAM took part in the symposium "Vom Orbit zur Entscheidung: Satellitenfernerkundung in der...

New Team Member at the EORC: Sonja Mass

New Team Member at the EORC: Sonja Mass

Sonja Maas joined the Earth Observation Research Cluster (EORC) in October 2025 as a research assistant for the EO4CAM project. After finishing her bachelor's degree in forestry, Sonja Maas enrolled in the EAGLE M.Sc. program at the University of Würzburg, where she...

EAGLE MSc Student Isabella Metz Wins Prestigious IFHS Student Award

EAGLE MSc Student Isabella Metz Wins Prestigious IFHS Student Award

We are delighted to share the exciting news that our MSc student Isabella Metz has been awarded the 2025 International Federation of Hydrographic Societies (IFHS) Student Award for her outstanding research on: “Analysis of Uncertainties for Error Detection and...