New publication: Towards an all-in-one sensor for forestry applications?

New publication: Towards an all-in-one sensor for forestry applications?

March 27, 2017

A recent paper published by Forestry and featuring Dr. Hooman Latifi from Dept. of Remote Sensing presents novel results of estimating most relevant forest inventory attributes from very high resolution stereoscopic satellite imagery.  The paper couples a systematic review of the state-of-the-art in photogrammetry-basad forest attribute estimation, a case study in southwestern Germany and an expert survey on the potenaitls and pitfalls of remote sensing-assisted forest inventory, in which internationally renowned peers from all over the world took part.

 

Area-based predictions of tree species, aboveground biomass and tree density based on WorldView-2 stereo data

 

The modeling/classification results were comparable to earlier studies in the same test site, obtained with more expensive airborne acquisitions. All in all, the study concludes that the simpler acquisition, reasonable price and the comparably easy data format and handling of VHRSI compared with other sensor types justifies further research on the application of these data for supporting operational forest inventories. The fulltext version of the paper together with the supplementary material can be found here.

Fassnacht, F.E., Mangold, D., Schäfer, J., Immitzer, M., Kattenborn, T., Koch, B and Latifi, H. 2017. Estimating stand density, biomass and tree species from very high resolution stereo-imagery – towards an all-in-one sensor for forestry applications? Forestry, DOI: 10.1093/forestry/cpx014

 

you may also like:

Bridging Scales: How Radar Satellites supports Crop Monitoring

Bridging Scales: How Radar Satellites supports Crop Monitoring

In an era of climate uncertainty and increasing pressure on agricultural systems, understanding how crops grow and respond to environmental stress is more important than ever. A new study led by researchers from Martin-Luther-University Halle-Wittenberg, in close...

New paper on automated pollinator monitoring using time-lapse images

New paper on automated pollinator monitoring using time-lapse images

Researchers from Helmholtz Centre for Environmental Research (UFZ) in Leipzig, the German Centre for Integrative Biodiversity Research (iDiv) in Leipzig, the Martin Luther University Halle-Wittenberg, the German Remote Sensing Data Center (DFD) of the German Aerospace...

Media reporting on “understanding urban heat in Germany”

Media reporting on “understanding urban heat in Germany”

We recently reported on the urban heat island effect in Germany and the work of DLR and EORC on the topic – please see here: https://remote-sensing.org/understanding-urban-heat-in-germany-insights-from-prof-hannes-taubenbocks-research/   Here is a link to...

Proceedings of JURSE published

Proceedings of JURSE published

Our EORC and our colleagues from DLR have contributed with various research works to the Joint Urban Remote Sensing Event (JURSE) 2025. This bi-annual conference took place in Tunis, Tunisia, in early May 2025. JURSE is committed to introduce innovative methodologies...

DLR supports Zeit Magazine with Land Surface Temperature data

DLR supports Zeit Magazine with Land Surface Temperature data

Our colleagues from DLR provided long-term Land Surface Temperature (LST) data for an interactive tool in the Zeit Magazine which was recently published online https://www.zeit.de/zeit-magazin/2025-06/stadtteile-grossstaedte-wohnen-deutschland-lebensqualitaet The tool...