New publication: Towards an all-in-one sensor for forestry applications?

New publication: Towards an all-in-one sensor for forestry applications?

March 27, 2017

A recent paper published by Forestry and featuring Dr. Hooman Latifi from Dept. of Remote Sensing presents novel results of estimating most relevant forest inventory attributes from very high resolution stereoscopic satellite imagery.  The paper couples a systematic review of the state-of-the-art in photogrammetry-basad forest attribute estimation, a case study in southwestern Germany and an expert survey on the potenaitls and pitfalls of remote sensing-assisted forest inventory, in which internationally renowned peers from all over the world took part.

 

Area-based predictions of tree species, aboveground biomass and tree density based on WorldView-2 stereo data

 

The modeling/classification results were comparable to earlier studies in the same test site, obtained with more expensive airborne acquisitions. All in all, the study concludes that the simpler acquisition, reasonable price and the comparably easy data format and handling of VHRSI compared with other sensor types justifies further research on the application of these data for supporting operational forest inventories. The fulltext version of the paper together with the supplementary material can be found here.

Fassnacht, F.E., Mangold, D., Schäfer, J., Immitzer, M., Kattenborn, T., Koch, B and Latifi, H. 2017. Estimating stand density, biomass and tree species from very high resolution stereo-imagery – towards an all-in-one sensor for forestry applications? Forestry, DOI: 10.1093/forestry/cpx014

 

you may also like:

Science Slam in Rosenheim: Hannes Taubenböck wins again

Science Slam in Rosenheim: Hannes Taubenböck wins again

After the completely surprising win of the Science Slam in Würzburg in November 2024 (we reported about it: https://remote-sensing.org/hannes-taubenbock-represents-eorc-at-the-science-slam-and-wins/), Hannes Taubenböck was invited to the Science Slam in Rosenheim. The...

Deep learning course by Thorsten Hoeser

Deep learning course by Thorsten Hoeser

This week Thorsten Hoeser, an expert in deep learning and data science, taught AI methods in remote sensing at our International EAGLE Earth Observation MSc Program. In this special module, Thorsten covered essential topics on the cutting-edge techniques for...

New Team Member: Sofia Haag

New Team Member: Sofia Haag

Sofia Haag joined the EORC in February 2025 as a research assistant for the EO4CAM project. After completing her Bachelor's degree in Geography at the University of Heidelberg, she pursued her Master's in Applied Physical Geography at the University of Würzburg. Sofia...