Preprocessing of Sentinel-1 SAR data via Snappy Python module

Preprocessing of Sentinel-1 SAR data via Snappy Python module

m

August 1, 2016

This chapter demonstrates the Snappy Python module for the automatization of the ESA SNAP tool.

Code examples will be shown for an automated processing chain for the preprocessing of Sentinel-1 SAR data including Calibration, Subsetting and Terrain Correction of GRD (Ground Range Detected data).

A detailed installation tutorial for snappy can be found here: https://senbox.atlassian.net/wiki/display/SNAP/How+to+use+the+SNAP+API+from+Python

First, import the needed Python modules:

 

import snappy

from snappy import ProductIO
from snappy import HashMap

import os, gc   
from snappy import GPF

GPF.getDefaultInstance().getOperatorSpiRegistry().loadOperatorSpis()
HashMap = snappy.jpy.get_type('java.util.HashMap')

Now loop through all Sentinel-1 data sub folders that are located within a super folder (of course, make sure, that the data is already unzipped):

path = "D:\\SENTINEL\\"
 for folder in os.listdir(path):

   gc.enable()
   
   output = path + folder + "\\"  
   timestamp = folder.split("_")[4] 
   date = timestamp[:8]

Then, read in the Sentinel-1 data product:

   sentinel_1 = ProductIO.readProduct(output + "\\manifest.safe")    
   print sentinel_1

If polarization bands are available, spolit up your code to process VH and VV intensity data separately. The first step is the calibration procedure by transforming the DN values to Sigma Naught respectively. You can specify the parameters to output the Image in Decibels as well.

   pols = ['VH','VV'] 
   for p in pols:  
      polarization = p    
    
      ### CALIBRATION
  
      parameters = HashMap() 
      parameters.put('outputSigmaBand', True) 
      parameters.put('sourceBands', 'Intensity_' + polarization) 
      parameters.put('selectedPolarisations', polarization) 
      parameters.put('outputImageScaleInDb', False)  

      calib = output + date + "_calibrate_" + polarization 
      target_0 = GPF.createProduct("Calibration", parameters, sentinel_1) 
      ProductIO.writeProduct(target_0, calib, 'BEAM-DIMAP')

Next, specify a subset AOI to reduce the data amount and processing time. The AOI specified by its outer polygon corners and is formatted through a Well Known Text (WKT).

      ### SUBSET

      calibration = ProductIO.readProduct(calib + ".dim")    
      WKTReader = snappy.jpy.get_type('com.vividsolutions.jts.io.WKTReader')

      wkt = "POLYGON((12.76221 53.70951, 12.72085 54.07433, 13.58674 54.07981, 
                      13.59605 53.70875, 12.76221 53.70951))"

      geom = WKTReader().read(wkt)

      parameters = HashMap()
      parameters.put('geoRegion', geom)
      parameters.put('outputImageScaleInDb', False)

      subset = output + date + "_subset_" + polarization
      target_1 = GPF.createProduct("Subset", parameters, calibration)
      ProductIO.writeProduct(target_1, subset, 'BEAM-DIMAP')

Apply a Range Doppler Terrain Correction to correct for layover and foreshortening effects, by using the SRTM 3 arcsecond product (90m) that is downloaded automatically. You could also specify an own DEM product with a higher spatial resolution from a local path:

      ### TERRAIN CORRECTION
 
      parameters = HashMap()     
      parameters.put('demResamplingMethod', 'NEAREST_NEIGHBOUR') 
      parameters.put('imgResamplingMethod', 'NEAREST_NEIGHBOUR') 
      parameters.put('demName', 'SRTM 3Sec') 
      parameters.put('pixelSpacingInMeter', 10.0) 
      parameters.put('sourceBands', 'Sigma0_' + polarization)
 
      terrain = output + date + "_corrected_" + polarization 
      target_2 = GPF.createProduct("Terrain-Correction", parameters, subset) 
      ProductIO.writeProduct(target_2, terrain, 'GeoTIFF')

Fergana_Sentinel

you may also like:

Succesful MSc Theseis Defense by Jean de Dieu Tuyizere

Succesful MSc Theseis Defense by Jean de Dieu Tuyizere

Congratulations to Jean de Dieu Tuyizere on the successful defense of his MSc thesis, entitled "Utilizing deep learning and Earth Observation data to predict land cover changes in Volcanoes National Park, Rwanda".   His study analyzed and projected land cover...

Writing in Progress Across Europe!

Writing in Progress Across Europe!

This week, members of the COST Action DSS4ES from all over Europe — including colleagues from Türkiye — have gathered at the Earth Observation Research Cluster of the University of Würzburg for a dedicated writing retreat. Our goal? To collaboratively shape the...

EORC at the GfÖ Annual Symposium 2025 in Würzburg

EORC at the GfÖ Annual Symposium 2025 in Würzburg

Last week, EORC staff co-organized and partizipated in the Ecological Society of Germany, Austria and Switzerland (GfÖ) Annual Symposium 2025, this year hosted at University of Würzburg. The symposium, attended by more than 600 people, covered a wide range of topics...

New study on the conservation of biodiversity in West Africa

New study on the conservation of biodiversity in West Africa

A new study by our team, led by Insa Otte, on the conflict between biodiversity conservation in protected areas and agricultural development in West Africa has been published in the journal Natur und Landschaft. The abstract: According to the Human Development Report...

New study on invasive species in Rwanda

New study on invasive species in Rwanda

A new publication by EORC members Lilly Schell, Insa Otte, Sarah Schönbrodt-Stitt and Konstantin Müller, was just published   in the Journal Frontiers in Plant Science. Their study, “Synergistic use of satellite, legacy, and in situ data to predict spatio-temporal...