R Package for harmonic modelling of time-series data

R Package for harmonic modelling of time-series data

April 23, 2020

Sentinel-2 NDVI time-series over the Steigerwald. Left: Original satellite scenes after cloud, cloud shadow and snow maksing. Right: Interpolated time-series using a harmonic modelling.

In order to fully exploit the monitoring potential of the satellite systems, challenges such as noise and data gaps must be effectively addressed. These quality losses are mainly caused by sensor artifacts, clouds, cloud shadows and other weather conditions (Verbesselt et al., 2012). In the context of time series analysis, harmonic modeling is a powerful tool to fill these gaps and reduce noise by smoothing the original signal (de Jong et al., 2011).

For that purpose, I created an R-package rHarmonics which enables the user to perform a harmonic analysis on a given time-series data set.

To calculate the harmonic fitted curve of a periodic signal, ordinary least squares regressions are computed using coupled sine and cosine curves on time-series data. The underlying algorithm which is based on Shumway & Stoffer (2017) equations 4.1 – 4.2 can be seen below:

MODIS NDVI time-series data together with a harmonic fitted curve using 3 cylces per year.



Literature:

de Jong, R., de Bruin, S., de Wit, A., Schaepman, M. E., & Dent, D. L. (2011). Analysis of monotonic greening and browning trends from global ndvi time-series. Remote Sensing of Environment, 115 (2), 692–702.

Shumway, R. H., & Stoffer, D. S. (2017). Time series analysis and its applications: with r examples. Springer.

Verbesselt, J., Zeileis, A., & Herold, M. (2012). Near real-time disturbance detection using satellite image time series. Remote Sensing of Environment, 123 , 98–108.

you may also like:

Bridging Scales: How Radar Satellites supports Crop Monitoring

Bridging Scales: How Radar Satellites supports Crop Monitoring

In an era of climate uncertainty and increasing pressure on agricultural systems, understanding how crops grow and respond to environmental stress is more important than ever. A new study led by researchers from Martin-Luther-University Halle-Wittenberg, in close...

Upcoming PhD Defense by Ariane Droin

Upcoming PhD Defense by Ariane Droin

Ariane Droin will defend her PhD thesis "Permeabilität und Erreichbarkeit lokaler Nachbarschaften im urbanen Kontext. Eine geographische Analyse auf Basis räumlicher Netzwerke." on September 16th at 4 p.m. at the John-Skilton Straße 4a, Seminar Room 2/00.B.03.  ...

PhD Defense by Dorothee Stiller

PhD Defense by Dorothee Stiller

Dorothee Stiller will defend her PhD thesis "Potential of Remote Sensing Data and Methods for Urban Transport Research" on 15th of September at 4 p.m. at the John-Skilton Straße 4a, seminar Room 2/00.B.03. Everyone who is interested is cordially invited to join her...

Strengthening Collaboration with SANParks for Conservation Research

Strengthening Collaboration with SANParks for Conservation Research

Our long-standing collaboration with Dr. Corli Coetsee and Dr. Ben Wigley from SANParks is moving forward with promising new research activities. The joint work is focusing on mapping savanna features more accurately such as trees, paths, or animals through innovative...

Exploring Future Collaborations on Fire Research in African Savannas

Exploring Future Collaborations on Fire Research in African Savannas

During recent discussions, new opportunities for collaboration emerged between Navashni Govender, Senior Conservation Manager at SANParks in Kruger National Park, Prof. Katharina Breininger, head of the Pattern Recognition Lab in Informatics, and Dr. Mirjana Bevanda...

Understanding Urban Heat in Germany

Understanding Urban Heat in Germany

In a world where summers grow ever hotter, understanding and combating urban heat islands is becoming more urgent than ever. A recent study by our Prof. Hannes Taubenboeck sheds new light on this challenge—and at its helm is Dr. Tobias Leichtle, Dr. Thilo Erbertseder...