M.Sc. handed in on animal movement and remote sensing

M.Sc. handed in on animal movement and remote sensing

written by Martin Wegmann

March 1, 2017

The M.Sc. thesis “Can animal movement and remote sensing data help to improve conservation efforts?” by Matthias Biber M.Sc. student within the Global Change Ecology program handed in his thesis. He explored the potential of remote sensing data to explain animal movement patterns and if these linkages can help to improve conservation efforts. He used Zebra as study animal in Southern and Eastern Africa. The second supervisor of his M.Sc. was Prof. Thomas Müller from BIK-F.

 

abstract:
Climate and land-use change have a growing influence on the world’s ecosystems, in particular in Africa, and increasingly threaten wildlife. The resulting habitat loss and fragmentation can impede animal movement, which is especially true for migratory species. Ungulate migration has declined in recent years, but its drivers are still unclear. Animal movement and remote sensing data was combined to analyse the influence of  various vegetation and water indices on the habitat selection of migratory plains zebras in Botswana’s Ngamiland. The study area experienced a more or less steady state in normalised difference vegetation index (NDVI) over the last 33 years. More than half of the study area was covered by PAs. NDVI increased stronger in PAs compared to areas that were not protected. NDVI was always higher in the Okavango Delta  compared to the Makgadikgadi Pans. Although zebras are thought to select for areas with high NDVI, they experienced a lower NDVI in the Makgadikgadi grasslands during wet season. Step selection functions (SSFs) showed that NDVI derived from Landsat as well as NDVI derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) were significant drivers of habitat selection across all individuals. Migration  seems to be driven by the high nutritional value of the Makgadikgadi grasslands and not seasonal resource limitation. Landsat imagery was shown to provide different environmental information compared to MODIS data. This highlights not only the importance of NDVI for explaining animal movement, but also the importance of Landsat imagery for monitoring habitat extent and fragmentation. Incorporating the animal’s  behavioural state and memory into SSFs will help to improve our ecological understanding of animal movement in the future.

you may also like:

New PhD student Adomas Liepa

New PhD student Adomas Liepa

I started my academic career in Bergen, Norway where I studied geophysics. During my bachelor's degree I became more interested in Earth's surface and surface dynamics, rather than the interior of the Earth, which is what geophysics focuses on. After obtaining my...

Merry Christmas and a Happy New Year 2021

Merry Christmas and a Happy New Year 2021

An unprecedented year with various unexpected events and many required changes had to be managed by our department like by many other organizations as well. A challenging year is coming to an end. We at the Department of Remote Sensing at the University of Würzburg...

most recent news:

New researcher Pawel Kluter

New researcher Pawel Kluter

Pawel Kluter joined the Department of Remote Sensing as a Research Associate in November 2020. His main role is the deployment of Data Cubes in cloud environments (Front End / Back End), as well as the development of remote sensing processing routines using Python....

New PostDoc Dr Insa Otte

New PostDoc Dr Insa Otte

We are very happy to welcome Insa Otte at the Department of Remote Sensing as a new research fellow. Before joining the department, Insa worked on rainfall in-situ data and focused on extreme events. But generally, she has a great interest and experience in...