Master Thesis Defense by Nora Nieskens

Master Thesis Defense by Nora Nieskens

m

September 8, 2023

On September 08, 2023, Nora Nieskens successfully defended her master’s thesis entitled “Estuaries in transition: Earth observation-based analysis of the turbidity dynamics in selected North Sea estuaries” at the Earth Observation Research Cluster.

 

The thesis was supervised by Dr. Sarah Schönbrodt-Stitt and Daniel Ruppert (WWF Germany).

 

Abstract of the thesis: Estuaries are among the most sensitive, complex and biologically productive aquatic environments. Intensive human modification of estuarine depth and shape has resulted in altered hydromorphological conditions and consequently modified patterns of suspended particulate matter (SPM) for all German North Sea estuaries. The amount of SPM in estuaries, for which turbidity is used as a proxy, is of high economic and ecological importance as increased sediment loads contribute to aquatic environment degradation. This study investigated the long-term development and spatial patterns of surface turbidity in the Elbe estuary using in-situ data and remote sensing (RS) techniques. For long-term spatial turbidity retrieval, established RS approaches were tested employing Landsat data. Three semi-analytical algorithms (Nechad et al. 2009, Nechad et al. 2016 and Dogliotti et al. 2015) were applied, validated and calibrated against in-situ turbidity data. In addition, a random forest-based (RF) machine-learning approach was implemented and assessed. Accuracies varied considerably between different satellites and methodologies. The semi-empirical models, the RF model and the index-based approach (NDTI) show the potential to adequately capture the spatial and temporal distribution of turbidity. However, the semi-empirical approaches do not consistently capture the turbidity dynamics quantitatively for the Elbe estuary. The machine learning approach provides better predictive power compared to in-situ turbidity. The analysis of the long-term development and spatial patterns of surface turbidity in the Elbe estuary based on in-situ data and RS-based turbidity products showed that a new high turbidity level occurred in 2011 and intensified in the following years. Further challenges and potentials of transferring the RS-based approach to the other German North Sea estuaries are evaluated. It is found that additional complexities and uncertainties arise due to differences in in-situ data and estuarine conditions.

 

We wish Nora all the best for her future career.

 

 

 

 

 

you may also like:

Presentation at ESA Advanced Training Course

Presentation at ESA Advanced Training Course

At the 14th Advanced Training Course on Land Remote Sensing – Agriculture, held from 29 September to 3 October in Thessaloniki, researchers, early-career scientists, and experts from across Europe gathered to exchange knowledge on the latest advances in remote sensing...

New EAGLEs take off into the Winter Term 2025/26

New EAGLEs take off into the Winter Term 2025/26

As in previous years, the next generation of EAGLE Master's students from around the world gathered at the Earth Observation Research Center (EORC) on the first day of the winter term to begin their studies at the University of Würzburg. Prof. Dr. Tobias Ullmann...

Recording the Sounds of a River

Recording the Sounds of a River

Over the weekend, EORC PI Florian Betz met with Martina Cecchetto and Riccardo Fumigalli from the University of Padua to conduct ambient sound recordings and collect photographs of the Lech River, one of the major tributaries of the upper Danube. The photographs and...

Our PhD Wall is Growing — and So Is Our Research Family!

Our PhD Wall is Growing — and So Is Our Research Family!

It’s been a remarkable year for our research team! The PhD Wall of Fame, showcasing all past and current doctoral researchers, has officially reached its limits — and we’ve had to expand it to make room for even more success stories. So far six PhD defenses have taken...

Privacy Policy

Lehrstuhl für Fernerkundung & Lehrstuhl für Urbane Fernerkundung

Erdbeobachtung an der Universität Würzburg