MSc thesis handed in on Analysis of Airborne LiDAR Data for Deriving Terrain and Surface Models

MSc thesis handed in on Analysis of Airborne LiDAR Data for Deriving Terrain and Surface Models

May 9, 2016

A M.Sc thesis by Raja Ram Aryal  at the University of Applied Sciences Stuttgart was recently written  under the supervision of Dr. Hooman Latifi and Prof. Michael Hahn. The thesis focused on a comparative study on the variations of an adaptive TIN ground filtering algorithm  to extract DTM from discrete LiDAR point cloud captured in leaf-off and full wave LiDAR point cloud collected in leaf-on conditions. In addition Analysis of Variance (ANOVA) type II was used to assess the influential factors that are related to DTM random error.  The Accuracy assessment of extracted DTMs was done  at local and landscape levels in heterogeneous forest stands of Bavarian Forest National Park. The DTM generated using mirror points in leaf-off returned less RMSE (0.844 m) than in leaf-on (0.988 m) conditions. Furthermore RMSE values of 0.916 m (leaf-off) and 1.078 m (leaf-on) were observed the local level analysis when no mirror points were used. However, RMSE value of ca. 0.5 m was observed at the landscape level, with leaf-off DTM showing slightly higher error than leaf-on DTM. The DTM error increased with increasing slope. Deciduous habitat was found to significantly influence DTM error in both leaf-off and leaf-on conditions. Interaction effects were mainly observed between slope and forest habitat type.

DTMs Extracted using denser point cloud LiDAR data (leaf-on condition) using mirror points  (left side) and without using mirror (right side)

DTMs Extracted using denser point cloud LiDAR data (leaf-on condition) using mirror points (left side) and without using mirror (right side)

follow us and share it on:

you may also like:

A Strong Base at the Top: Research and Training at Schneefernerhaus

A Strong Base at the Top: Research and Training at Schneefernerhaus

We are grateful for the long-standing and growing opportunity to work with the Schneefernerhaus research station on Zugspitze, Germany’s highest mountain. For our work at the EORC, this collaboration provides an exceptional foundation for research on snow, ice,...

Our students wrote UFS press article

Our students wrote UFS press article

Our students have recently turned their fieldwork at the Environmental Research Station Schneefernerhaus into a published press article, showcasing how hands‑on glacier and snow research becomes part of real scientific communication. Our course at Schneefernerhaus The...

PhD submitted by Julia Rieder

PhD submitted by Julia Rieder

We are pleased to share that our PhD student Julia Rieder has successfully submitted her doctoral thesis! Her dissertation, entitled “Abiotic and biotic drivers of drought responses in European beech (Fagus sylvatica L.) inferred from field and LiDAR data”,...

Share This