New Publication: Canopy structure-corrected retrieval of foliar nitrogen by hyperspectral data

New Publication: Canopy structure-corrected retrieval of foliar nitrogen by hyperspectral data

September 22, 2016

A new review paper has been recently published by International Journal of Applied Earth Observation and Geoinformation. The paper is amongst the outputs of a PhD thesis by Zhihui Wang from the University of Twente, and focuses on retrieval of forest canopy foliar nitrogen from hyperspectral imagery by additionally correcting for canopy structure effects. Te main research question arose from the fact that the interaction between leaf properties and canopy structure confounds the estimation of foliar nitrogen, which can be corrected for by using the canopy scattering coefficient (the ratio of BRF and the directional area scattering factor, DASF).

 

Directional area scattering factor (DASF) calculated based on spectral invariant theory for broadleaf, needle leaf, and mixed forest

The results of the research conducted across the Bavarian Forest National Park confirm that %N can be retrieved using the scattering coefficient aftercorrecting for canopy structural effect. With the aid of  upcoming space-borne hyperspectral imagery, large-scale foliar nitrogen maps can be generated to improve the modeling ofecosystem processes as well as ecosystem-climate feedbacks.

Further information on this paper can be found here.

Source:

Wang, Z., Skidmore, A. K., Wang, T., Darvishzadeh, R., Heiden, U., Heurich, M., Latifi, H., Hearne, J. 2016. Canopy foliar nitrogen retrieved from airborne hyperspectral imagery by correcting for canopy structure effects. International Journal of Applied Earth Observation and Geoinformation 54(2017): 84-94.

 

you may also like:

New Publication on Automated building characterization

New Publication on Automated building characterization

A new publication by Hannes Taubenböck and colleagues is online about "Automated building characterization for seismic risk assessment using street-level imagery and deep learning". From the abstract: "Accurate seismic risk modeling requires knowledge of key...

most recent news:

Successful Hybrid WASCAL Symposium

Successful Hybrid WASCAL Symposium

We are very happy that the WASCAL symposium for Research and Capacity Building went very well. Our staff members who organized it managed to have a great hybrid symposium with valuable talks covering all aspects of WASCAL  while complying to the Covid-regulations. We...

New Publication on Automated building characterization

New Publication on Automated building characterization

A new publication by Hannes Taubenböck and colleagues is online about "Automated building characterization for seismic risk assessment using street-level imagery and deep learning". From the abstract: "Accurate seismic risk modeling requires knowledge of key...

Open Postdoc position on Megacities

Open Postdoc position on Megacities

Dear all, please find below an open Postdoc position with Hannes Taubenböck from our department. For the research project ‘Megacities – living environments of the future’, funded by the VolkswagenStiftung, the Chair of English Linguistics at the...