New Publication on Automated building characterization

New Publication on Automated building characterization

September 15, 2021

A new publication by Hannes Taubenböck and colleagues is online about “Automated building characterization for seismic risk assessment using street-level imagery and deep learning”. From the abstract: “Accurate seismic risk modeling requires knowledge of key structural characteristics of buildings. However, to date, the collection of such data is highly expensive in terms of labor, time and money and thus prohibitive for a spatially continuous large-area monitoring. This study quantitatively evaluates the potential of an automated and thus more efficient collection of vulnerability-related structural building characteristics based on Deep Convolutional Neural Networks (DCNNs) and street-level imagery such as provided by Google Street View. The proposed approach involves a tailored hierarchical categorization workflow to structure the highly heterogeneous street-level imagery in an application-oriented fashion. Thereupon, we use state-of-the-art DCNNs to explore the automated inference of Seismic Building Structural Types. These reflect the main-load bearing structure of a building, and thus its resistance to seismic forces. Additionally, we assess the independent retrieval of two key building structural parameters, i.e., the material of the lateral-load-resisting system and building height to investigate the applicability for a more generic structural characterization of buildings. Experimental results obtained for the earthquake-prone Chilean capital Santiago show accuracies beyond κ = 0.81 for all addressed classification tasks. This underlines the potential of the proposed methodology for an efficient in-situ data collection on large spatial scales with the purpose of risk assessments related to earthquakes, but also other natural hazards (e.g., tsunamis, or floods).”

read full article here:

P. Aravena Pelizari, C. Geiß, P. Aguirre, H. Santa María, Y. Merino Peña, and H. Taubenböck (2021) Automated building characterization for seismic risk assessment using street-level imagery and deep learning. ISPRS Journal of Photogrammetry and Remote Sensing

follow us and share it on:

you may also like:

Crêpes, Culture, and a Dash of Friendly Competition at EORC 🥞

Crêpes, Culture, and a Dash of Friendly Competition at EORC 🥞

At EORC, science may bring us together—but sometimes, it’s a social activity - in this case: crêpes that makes a difference. Our recent social activity turned the kitchen into a lively hub of  culinary creativity as our French, Swiss and francophil colleagues took the...

Coming soon: Geolingual Studies on Urban Space

Coming soon: Geolingual Studies on Urban Space

We are delighted to announce that the first edited volume on "Geolingual Studies on Urban Space" will be published by Edinburgh University Press as part of the series New Directions in World Englishes Research in August 2026. The volume is edited by Carolin...

From Satellites to Snow Angels

From Satellites to Snow Angels

Our EAGLE M.Sc. students, coming from all over the world, are making the most of the short breaks between courses. Whether it’s spontaneous snow angel sessions or friendly snowball fights around the EORC, laughter and flying snow are never far away. These moments of...

Where Learning Meets Friendship

Where Learning Meets Friendship

At EAGLE, studying together is only part of the story. Our students are more than classmates — they’re hiking buddies, party companions, and the kind of people who show up to lectures with birthday cakes 🎂. Today was a perfect example. Our EAGLE student Esperance from...

Share This