new publication Detecting Moving Trucks on Roads Using Sentinel-2 Data

new publication Detecting Moving Trucks on Roads Using Sentinel-2 Data

April 7, 2022

Our EAGLE student Henrik Fisser published his M.Sc. thesis “Detecting Moving Trucks on Roads Using Sentinel-2 Data” in Remote Sensing. From the abstract: “In most countries, freight is predominantly transported by road cargo trucks. We present a new satellite remote sensing method for detecting moving trucks on roads using Sentinel-2 data. The method exploits a temporal sensing offset of the Sentinel-2 multispectral instrument, causing spatially and spectrally distorted signatures of moving objects. A random forest classifier was trained (overall accuracy: 84%) on visual-near-infrared-spectra of 2500 globally labelled targets. Based on the classification, the target objects were extracted using a developed recursive neighbourhood search. The speed and the heading of the objects were approximated. Detections were validated by employing 350 globally labelled target boxes (mean F1 score: 0.74). The lowest F1 score was achieved in Kenya (0.36), the highest in Poland (0.88). Furthermore, validated at 26 traffic count stations in Germany on in sum 390 dates, the truck detections correlate spatio-temporally with station figures (Pearson r-value: 0.82, RMSE: 43.7). Absolute counts were underestimated on 81% of the dates. The detection performance may differ by season and road condition. Hence, the method is only suitable for approximating the relative truck traffic abundance rather than providing accurate absolute counts. However, existing road cargo monitoring methods that rely on traffic count stations or very high resolution remote sensing data have limited global availability. The proposed moving truck detection method could fill this gap, particularly where other information on road cargo traffic are sparse by employing globally and freely available Sentinel-2 data. It is inferior to the accuracy and the temporal detail of station counts, but superior in terms of spatial coverage.”

read the full article here:

Fisser, H.; Khorsandi, E.; Wegmann, M.; Baier, F. Detecting Moving Trucks on Roads Using Sentinel-2 Data. Remote Sens. 2022, 14, 1595. https://doi.org/10.3390/rs14071595

follow us and share it on:

you may also like:

New Earth Observation Project on Thermal Satellite Data

New Earth Observation Project on Thermal Satellite Data

We are honored that we are part of a new research and development project, focusing on the development of a satellite constellation capable of delivering high-resolution thermal data with a high revisit rate. The observations aim to make an important contribution to...

Season’s Greetings from the University of Würzburg

Season’s Greetings from the University of Würzburg

As the year draws to a close, we would like to also share the warm season’s greetings from the University of Würzburg to our partners and friends beyond the university. The past months have been marked by commitment, collaboration, and a shared dedication to academic...

New Publication on Agri-Photovoltaics Potential across entire India

New Publication on Agri-Photovoltaics Potential across entire India

For this study, Ingolstadt Technical University (THI) and Earth Observation Research Cluster at the University of Würzburg teamed up to map the potential for agri-photovoltaic across entire India. This technology has the potential to jointly adress Indias rising...

Building Bridges: EORC Team at the DLR EOC GZS Christmas Celebration

Building Bridges: EORC Team at the DLR EOC GZS Christmas Celebration

This week, members of our EORC team were delighted to join the DLR EOC GZS Christmas party — a wonderful occasion that reflected not only holiday cheer but also the growing spirit of collaboration across our organizations.It’s inspiring to see team spirit thriving...

A Cozy Christmas Gathering at John-Skilton-Str. 4

A Cozy Christmas Gathering at John-Skilton-Str. 4

As winter settled in and the year reached its final stretch, the community of our building, the John-Skilton-Str. 4 came together for a warm and joyful Christmas celebration. Our building—home to an impressive diversity of university units—proved once again how...

Share This