BSc Sophia Wisboeck using LiDAR and fCover to explain home range sizes

BSc Sophia Wisboeck using LiDAR and fCover to explain home range sizes

May 5, 2015

BSc_Sophia_Wisboeck_2015_UniversityWuerzburg_Remote-Sensing_euSophia Wisboeck handed in her BSc thesis “Explaining variation in home range size of red deer (cervus elaphus) in the Bavarian Forest National Park using LiDAR derived metrics on forest structure and fractional cover”. Her analysis of fractional cover and Lidar to explain home range sizes of red deer was very interesting and she gained valuable insights. Please read her abstract if you are interested: Effective conservation strategies and management are crucial to protect animals in their natural environment and provide them with the space and resources they need. However, further ecological research on animal behavior and habitat use is indispensable to provide a profound basis for such management decisions. One important issue hereof is understanding species’ spatial behavior, especially the use of home ranges which are defined by „that area traversed by the individual in its normal activities of food gathering, mating, and caring for young“ (Burt 1943). In general, home range selection can be summarized as trade-off between food availability and shelter. However, for ungulate species, home ranges are often found to vary substantially in size. The objective of this thesis is to analyze home range data of red deer (cervus elaphus) in the Bavarian Forest National Park and find possible explanations for their variation in size. Home ranges of five red deer individuals have been detected using GPS collars and serve as basis for the analysis. Information on forest structure derived from airborne LiDAR remote sensing, i. e. forest density in different height strata and canopy height metrics are related to the differing sizes of the home ranges. Furthermore, the use of fractional cover (fCover), a continuous land cover estimation method, to explain home range size is investigated. Analysis is carried out by fitting linear models. Results reveal that fCover is a promising method to predict variation in home range size, whereby it appears that with higher spatial resolution its predictive potential increases. LiDAR, in contrast, is not proved suitable for explaining variation in home range size under the circumstances given in this thesis.

supervised by Martin Wegmann, data provided by Benjamin Leunter and Mirjana Bevanda via the NP Bavarian Forest

you may also like:

Our research site and project covered by BR

Our research site and project covered by BR

The University forest at Sailershausen is a unique forest owned by the University of Wuerzburg. It comes with a high diversity of trees and most important is part of various research projects. We conducted various UAS/UAV/drone flights with Lidar, multispectral and...

Meeting of the FluBig Project Team

Meeting of the FluBig Project Team

During the last two days, the team of the FluBig project (remote-sensing.org/new-dfg-project-on-fluvial-research/) met at the EORC for discussing the ongoing work on fluvial biogeomorphology. After returning from a successful field expedition to Kyrgyzstan a couple of...

‘Super Test Site Würzburg’ project meeting

‘Super Test Site Würzburg’ project meeting

After the successful "Super Test Site Würzburg" measurement campaign in June (please see here: https://remote-sensing.org/super-test-site-wurzburg-from-the-idea-to-realization/ ), the core team from the University of Würzburg, the Karlsruhe Institute of Technology,...

EORC Talk: Geolingual Studies: A New Research Direction

EORC Talk: Geolingual Studies: A New Research Direction

On July 19th, Lisa Lehnen and Richard Lemoine Rodríguez, two postdoctoral researchers of the Geolingual Studies project, gave an inspiring presentation at the EORC talk series.   In the talk titled "Geolingual Studies – a new research direction", they...

EO support for UrbanPArt field work

EO support for UrbanPArt field work

From May to September, Karla Wenner, a PhD student at the Juniorprofessorship for Applied Biodiversity Science, will be sampling urban green spaces and semi-natural grasslands in Würzburg as part of the UrbanPArt project. Our cargo bikes support the research project...

Cinematic drone shots

Cinematic drone shots

We spend quite some time in the field conducting field work, from lidar measurements to vegetation samples in order to correlate it with remote sensing data to answer various research questions concerning global change. Field work is always a 24/7 work load and...