BSc thesis handed in on impact of spectral and spatial resolution on classifications

BSc thesis handed in on impact of spectral and spatial resolution on classifications

October 26, 2017

Marius Philipp handed in his B.Sc. thesis on “Spectral and spatial resolution of remote sensing data and its impact on classification processes – A case study of the Bavarian Steigerwald”. From the abstract: Remote sensing data enables a highly potent and cost efficient way for extracting thematic information such as land cover types and their distribution. A common area of application is therefore the creation of land cover and land use maps. But since this is a complex decision-making process, a successful execution of this task can prove to be rather difficult. Choosing suitable imagery in terms of its spatial and spectral resolution can highly affect the accuracy results of the finished product and should therefore be carefully considered beforehand. In order to assist ecologists by giving them a reference point for choosing the best suited data, this study contains comparisons of several remotely sensed data sets with different spatial and spectral features. Four individual classification algorithms are applied in a multi-level classification approach on numerous scales, which is designed to be increasingly complex with each classification scheme. Results of this study reveal, that higher spatial and spectral resolutions do not always generate more accurate classification results. It is shown, that satellite imagery with a medium spatial resolution tend to create better land cover maps compared to high resolution images. Furthermore,  the individual classification algorithms tend to strongly affect the quality of the classification products as well, which creates another import decision point that will be discussed in this study.

 

supervisor: Dr. Martin Wegmann in collaboration with the Steigerwald research station.

you may also like:

Deep learning course by Thorsten Hoeser

Deep learning course by Thorsten Hoeser

This week Thorsten Hoeser, an expert in deep learning and data science, taught AI methods in remote sensing at our International EAGLE Earth Observation MSc Program. In this special module, Thorsten covered essential topics on the cutting-edge techniques for...

New Team Member: Sofia Haag

New Team Member: Sofia Haag

Sofia Haag joined the EORC in February 2025 as a research assistant for the EO4CAM project. After completing her Bachelor's degree in Geography at the University of Heidelberg, she pursued her Master's in Applied Physical Geography at the University of Würzburg. Sofia...

“Super-Test-Site Würzburg” consortium meeting

“Super-Test-Site Würzburg” consortium meeting

The core team of our “Super-Test-Site Würzburg” consortium (University of Würzburg, the Karlsruhe Institute of Technology, the Friedrich-Alexander-University Erlangen-Nürnberg and the German Aerospace Center) met again in Würzburg on the 18th of February 2025....