BSc thesis “modeling species distribution in Kenya” finalised

BSc thesis “modeling species distribution in Kenya” finalised

October 20, 2014

Annika Rudolph a BSc student handed in her BSc thesis on species distribution modeling in Kenya using remote sensing data and the randomForest model. It is impressive what she achieved within 8 weeks without any prior R knowledge. All remote sensing data as well as statistical modeling were done in R, a lot of effort has also been put into the acquisition of relevant remote sensing imagery BSc_Rudolph_workflow.

 

In the passed decades global environmental changes such as climate and land-use changes and anthropogenic pressure increased. As a result the world’s biological diversity faces exceptional threat with following increasing rate of biodiversity loss. It becomes important to assess and
monitor actual or potential geographic distribution of species to prevent this ongoing loss. This has become an important component of conservation planning in recent years. A wide variety of modeling techniques have been developed for this purpose, such as remote sensing methods. These models ordinarily utilize associations between environmental variables and known species occurrence records to identify environmental conditions within which populations can be maintained. The spatial distribution of environments that are suitable for the species can then be estimated across a study region. In this study species distribution is estimated in Kenya using environmental variables derived
from remotely sensed data such as Moderate Resolution Imaging Spectroradiometer (MODIS). The focus of this work lies on the comparison between two approaches in terms of their appropriateness for predicting species distribution within the study area. The first approach
analyzes the species probability from statistics of all summed up species. The second approach examines species probability for each species and sums up statistics afterward. The results provide an overview of the predicted species probability in regard to their vicinity to Protected Areas.
For each approach the Pearson’s coefficient of correlation between observations and predictions (r2) and Receiver Operating Characteristics (ROC) is calculated. The results of the Random Forest algorithm reach a r2 of 0.49 for the first approach and 0.11 for the second approach. ROC is 0.88 for the first approach and 0.67 for the second approach. These results exhibit reasonable significance. This study showed that the predicted probability of species distribution is close to the actual probability for the first approach. The second approach is far from the actual probability.

you may also like:

RIESGOS project completion

RIESGOS project completion

Today, the six-year international project RIESGOS, led by DLR-DFD, funded by the Federal Ministry of Education and Research (BMBF) came to a successful completion. Dr. Elisabeth Schoepfer from DLR-DFD – one of our guest lecturers here at EORC – led this...

Experiencing rural Würzburg – NetCDA on a cultural exchange

Experiencing rural Würzburg – NetCDA on a cultural exchange

This week we went with our guest graduate students from West Africa on a small trip to some rural areas of Würzburg. Cultural exchange is an important component for our students – for some students it is their first visit to Germany, often also to Europe. Thus,...

Kickoff Meeting of the FluBig Project

Kickoff Meeting of the FluBig Project

On Tuesday, 27th of February, the kickoff meeting of the DFG funded projected FluBig took place at the EORC in Würzburg. Jointly with colleagues from the Karlsruhe Institute of Technology, Catholic University Eichstätt-Ingolstadt and Earth Observation Research...

University press covered our high alpine activity

University press covered our high alpine activity

The university press featured our activity in the Alps on the research station "Schneefernerhaus" close to Zugspitze. Together with other research groups of our university we aim to conduct various field data acquisitions e.g. in collaboration with the biology...

High alpine and snow training

High alpine and snow training

In collaboration with the German Alpine Club (DAV), Laura, one of our EAGLE students and Clara, a student assistant at our institute, recently participated in avalanche rescue training aimed at equipping individuals with essential skills and knowledge to respond...