New publication on decision fusion

New publication on decision fusion

August 1, 2015

Decision_fusion_loewOur new publication in ISPRS is accepted: “Decision fusion and non-parametric classifiers for land use mapping using multi-temporal RapidEye data”.

This study addressed the classification of multi-temporal satellite data from RapidEye by considering different classifier algorithms and decision fusion. Four non-parametric classifier algorithms, decision tree (DT), random forest (RF), support vector machine (SVM), and multilayer perceptron (MLP), were applied to map crop types in various irrigated landscapes in Central Asia. A novel decision fusion strategy to combine the outputs of the classifiers was proposed. This approach is based on randomly selecting subsets of the input data-set and aggregating the probabilistic outputs of the base classifiers with another meta-classifier. During the decision fusion, the reliability of each base classifier algorithm was considered to exclude less reliable inputs at the class-basis. The spatial and temporal transferability of the classifiers was evaluated using data sets from four different agricultural landscapes with different spatial extents and from different years. A detailed accuracy assessment showed that none of the stand-alone classifiers was the single best performing. Despite the very good performance of the base classifiers, there was still up to 50% disagreement in the maps produce by the two single best classifiers, RF and SVM. The proposed fusion strategy, however, increased overall accuracies up to 6%. In addition, it was less sensitive to reduced training set sizes and produced more realistic land use maps with less speckle. The proposed fusion approach was better transferable to data sets from other years, i.e. resulted in higher accuracies for the investigated classes. The fusion approach is computationally efficient and appears well suited for mapping diverse crop categories based on sensors with a similar high repetition rate and spatial resolution like RapidEye, for instance the upcoming Sentinel-2 mission.

 

you may also like:

Our research site and project covered by BR

Our research site and project covered by BR

The University forest at Sailershausen is a unique forest owned by the University of Wuerzburg. It comes with a high diversity of trees and most important is part of various research projects. We conducted various UAS/UAV/drone flights with Lidar, multispectral and...

Meeting of the FluBig Project Team

Meeting of the FluBig Project Team

During the last two days, the team of the FluBig project (remote-sensing.org/new-dfg-project-on-fluvial-research/) met at the EORC for discussing the ongoing work on fluvial biogeomorphology. After returning from a successful field expedition to Kyrgyzstan a couple of...

‘Super Test Site Würzburg’ project meeting

‘Super Test Site Würzburg’ project meeting

After the successful "Super Test Site Würzburg" measurement campaign in June (please see here: https://remote-sensing.org/super-test-site-wurzburg-from-the-idea-to-realization/ ), the core team from the University of Würzburg, the Karlsruhe Institute of Technology,...

EORC Talk: Geolingual Studies: A New Research Direction

EORC Talk: Geolingual Studies: A New Research Direction

On July 19th, Lisa Lehnen and Richard Lemoine Rodríguez, two postdoctoral researchers of the Geolingual Studies project, gave an inspiring presentation at the EORC talk series.   In the talk titled "Geolingual Studies – a new research direction", they...

EO support for UrbanPArt field work

EO support for UrbanPArt field work

From May to September, Karla Wenner, a PhD student at the Juniorprofessorship for Applied Biodiversity Science, will be sampling urban green spaces and semi-natural grasslands in Würzburg as part of the UrbanPArt project. Our cargo bikes support the research project...

Cinematic drone shots

Cinematic drone shots

We spend quite some time in the field conducting field work, from lidar measurements to vegetation samples in order to correlate it with remote sensing data to answer various research questions concerning global change. Field work is always a 24/7 work load and...