new publication: r.pi a GRASS package for semi-automatic spatial pattern analysis

new publication: r.pi a GRASS package for semi-automatic spatial pattern analysis

June 22, 2017

Our MEE paper on the r.pi GRASS package is now available online: “r.pi: a GRASS GIS package for semi-automatic spatial pattern analysis of remotely sensed land cover data”. This package allows a wide range of spatial pattern analysis from individual based dispersal models to graph theory or omni-directional connectivity metrics. It is part of the GRASS software and all outputs are provided in spatial formats and can be used for further processing in any spatial software such as GRASS, QGIS or R.

The full publication can be accessed here:

Wegmann, M., Leutner, B. F., Metz, M., Neteler, M., Dech, S. and Rocchini, D. (), r.pi: a GRASS GIS package for semi-automatic spatial pattern analysis of remotely sensed land cover data. Methods Ecol Evol.

 

 

you may also like:

New publication on decoding stress in urban public spaces

New publication on decoding stress in urban public spaces

Researchers from the Karlsruhe Institute of Technology (KIT), the Earth Observation Center (EOC) of the German Aerospace Center (DLR) in Oberpfaffenhofen and our Earth Observation Research Cluster of the University of Würzburg teamed up for a study on decoding stress...

A Glimpse into Our Research: Data on Display in the Foyer

A Glimpse into Our Research: Data on Display in the Foyer

Stepping into the foyer, visitors are now greeted by large, striking images that tell the story of our research through data. Each visual represents a unique scientific perspective – from the Arctic to the cultivated landscapes of Bavaria, and from forest canopies to...

Successful MSc defense by Sonja Maas

Successful MSc defense by Sonja Maas

Big congratulations to Sonja Maas, who successfully defended her Master thesis today on the highly relevant and increasingly pressing topic: LiDAR-Based Acquisition Strategies for Forest Management Planning in a Mature Beech Stand Supervised by Dr. Julian Fäth and...

New publication on bottom-up building exposure modeling

New publication on bottom-up building exposure modeling

Researchers from the German Remote Sensing Data Center (DFD) of the German Aerospace Center (DLR), the Department of Geography of the Rheinische Friedrich-Wilhelms-University in Bonn and our Earth Observation Research Cluster (EORC) of the...